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Videos are well-received methods for storytellers to communicate various narratives. To further engage view-

ers, we introduce a novel visual medium where data visualizations are embedded into videos to present data

insights. However, creating such data-driven videos requires professional video editing skills, data visual-

ization knowledge, and even design talents. To ease the difficulty, we propose an optimization method and

develop SmartShots, which facilitates the automatic integration of in-video visualizations. For its develop-

ment, we first collaborated with experts from different backgrounds, including information visualization,

design, and video production. Our discussions led to a design space that summarizes crucial design consid-

erations along three dimensions: visualization, embedded layout, and rhythm. Based on that, we formulated

an optimization problem that aims to address two challenges: (1) embedding visualizations while considering

both contextual relevance and aesthetic principles and (2) generating videos by assembling multi-media ma-

terials. We show how SmartShots solves this optimization problem and demonstrate its usage in three cases.

Finally, we report the results of semi-structured interviews with experts and amateur users on the usability

of SmartShots.
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1 INTRODUCTION

Videos have been adopted in various disciplines, such as journalism [41], education [14], and ad-
vertising [1], to communicate stories. As an effective means for telling visual stories [29, 31], data
visualization [38] has been embedded into videos to enhance narrations. Real-world examples of
this novel visual medium can be seen in a video from AMD (Figure 1(a)), which highlights the
power-saving feature of its newest GPU using a skew bar chart, and a video from Ekko Hub (Fig-
ure 1(b)), which uses a horizontal bar chart to highlight the benefits of its WIFI technology. The
major advantage of the data-driven content is the support by convincing and objective facts that
can increase the persuasiveness and expressiveness of the videos. However, creating videos with

data visualizations embedded (VDE) is not an easy task.
Many factors can influence the effectiveness of VDE. First, the interplay between data visualiza-

tions and video content is very important in producing a complete and consistent story. However,
such a relationship cannot be easily balanced because various factors in the design space need to
be considered, such as where in the video should the data visualization be embedded for both the
visualization and video content to be well noticed and how long the data visualization should be
played to keep viewers oriented. Second, the type of data visualization and the associated anima-
tions directly affect the effectiveness of reading and understanding the video content. Third, the
aesthetic quality of videos and the synthesis of music are quite important for real-world videos that
target attracting ordinary viewers. Thus, producing such an information-rich video may require
considerable efforts and experiences from designers.

To produce general data-driven videos [7], previous studies [7, 9] have developed a template-
based tool that generates videos by composing a set of data motion graphics. However, this tool
cannot be used for producing VDE because of two reasons. First, it mainly focuses on animated data
visualizations and ignores the video content [22]. To consider the interplay between the inserted
entities and videos, many approaches have been applied in the field of in-video advertising [37,
49, 59]. However, these methods mainly focus on image or text rather than data visualizations and
ignore the aesthetic principles [10, 33] when identifying the insertion points. Second, this tool does
not support the synthesis of music that is vital for real-world videos to inspire and attract viewers.
Some music-driven approaches [53, 54] have been proposed to automatically compose video and
music content, but these approaches require a complete video in advance instead of assembling
multi-media materials into a new one.

These limitations motivate us to develop a new tool that facilitates the automatic generation of
VDE. However, the development of the tool is hindered by the following challenges.

One challenge is that it is difficult to abstract a sufficient and essential design space among all
design considerations (DCs). As discussed earlier, many factors should be considered in the de-
sign of VDE. To seamlessly integrate data visualizations in a video context, these visualizations
must be initially associated with their respective referents (e.g., physical entities in videos), then
the embedded layouts should be optimized based on certain aesthetic goals. For example, the visu-
alizations should be embedded in the same region of videos to preserve the viewers’ mental map
and to prevent an occlusion of referents, which can negatively influence readability. Furthermore,
designers may not be able to easily select a suitable visualization type for the data in a specific
video scene. Thus, a comprehensive design space that considers both contextual relevance and
aesthetic principles must be developed to produce appealing layouts.

Another challenge is that it is difficult but necessary to propose a computational model corre-
sponding to the design space and enable automatic video generation. The production of digital
videos involves processing and assembling multi-media materials, including data visualizations,
video clips, images, and music, which requires considerable effort [7] and design expertise. First,
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Fig. 1. Videos with data visualizations embedded. (a) The bar chart1 is used to highlight the power-saving

feature. (b) The horitontal bar chart2 compares the different wireless techniques. White boxes are manually

labeled to distinguish the embedded visualizations.

manually editing videos requires professional skills. Second, assembling data visualizations, im-
ages, and video clips while considering music rhythm is also a tedious task. Thus, an intelligent
approach to process multi-media materials, especially one that can automatically embed data vi-
sualizations into videos, must be developed.

To address these challenges, we must fully understand the design space of VDE and consider the
different design aspects of the video generation. Therefore, we collaborate closely with a group
of experts to determine the crucial DCs for VDE. We target video makers who want to integrate
data visualizations into their videos, including both designers who are not experts in visualization
designs and amateur users who are novice in video editing skills. Based on these considerations,
we develop a novel optimization model that targets (1) embedded visualization: we extract five
high-level aesthetic principles from the DCs and then define five energy functions to determine
the suitable visualization type and optimize the embedded layouts accordingly; (2) video generation:
we initially translate the input data tables, video clips, and images into shots that refer to video
pieces and then formulate a dynamic programming problem that matches the shot transitions
with the music rhythm to automate the composition of source materials. Furthermore, we develop
SmartShots, a video generation system that integrates a set of post-editing interactions to facilitate
the easy creation of VDE. We present three use cases to demonstrate the usage and extensibility
of our approach and conduct semi-structured interviews to validate the usability of SmartShots.
Our preliminary work [48] designed interface components for the interactive editing of VDE. This
article provides a comprehensive final review of the entire SmartShots project with the following
new contributions:
• We characterize a design space and propose a set of DCs that can guide the design and

creation of VDE.
• We formulate an energy-based optimization problem according to the DCs to automate the

video generation process. In particular, we consider the aesthetic principles to optimize the
in-video layouts for data visualizations.
• We collect user feedback to evaluate SmartShots and present three use cases to demonstrate

the usage and effectiveness of this tool.

2 RELATED WORK

This section presents the relevant studies on data videos and discusses the state-of-the-art methods
that address the challenges in embedded visualizations, label placement, layout optimization, and
video generation.

1https://www.youtube.com/watch?v=dTa8GVO3GFI.
2https://www.youtube.com/watch?v=raok7kqii_w.
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2.1 Data Video

Data video is the video with data-driven arguments or visualizations [7–9], which is one of the
seven genres of narrative visualizations [45, 46, 64]. Amini et al. [7] studied data videos in the
wild and summarized the authoring processes adapted by designers. Based on that, they devel-
oped DataClips, an authoring tool that can help users create data motion graphics and aggregate
separate units into a complete video [9]. MTurk [6] studies evaluated the effect of data animation
and pictographic representations on the viewer engagement of data videos, which reported a set of
design suggestions [8]. Although these studies have provided a deep understanding of data videos,
they mainly focus on data-driven motion graphics and ignore the combination between data visu-
alizations and video content. Recent studies [21, 34] on data videos mainly focus on specific data
formats or tasks, which cannot be easily extended for the overall pipeline of video generation. For
example, Lu et al. [34] proposed a novel approach to track the temporal changes of time series in
data videos, and Ge et al. [21] focused on developing high-level grammars for data-driven chart
animations. To understand how to augment videos with data visualizations, Tang et al. [47] con-
ducted group studies to collect design guidelines from professional designers. However, it is still
unknown to how to develop an authoring tool that can create VDE. To bridge the gap, we propose
a novel video generation system for producing VDE that extends the form of data videos from
motion graphics to videos with real scenes and embedded data visualizations.

2.2 Embedded Visualization

Embedded data visualization has become an emerging research topic in the fields of information
visualization [58]. To make embedded data visualization more applicable, some AR (VR)-based
toolkits [15] and techniques [26, 36] have been developed. Chen et al. [15] developed a mobile-
based authoring tool, namely MARVisT, to enable non-experts to easily bind data to virtual glyphs
and real objects. McNamara et al. [36] developed a novel technique for placing textual labels in a
virtual environment where the eye-tracking data is used to improve the identification of objects
of interests. Hegde et al. [26] focused on embedding textual labels in a physical environment and
proposed a novel technique for an occluded-free layout. However, all these applications mainly
focus on embedding visualizations into a 3D space that is established on AR (VR)-based technolo-
gies [52]. Unlike these approaches, the goal of our study is to integrate data visualizations into a
2D video context. Recently, researchers [17, 62] also proposed a few tools to support the design of
infographics that embed visualizations into 2D images. Coelho and Mueller [17] developed a sys-
tem to create such kinds of infographics where visualizations are placed on some areas in images
and fitted in the shapes of the embedded areas. Zhang et al. [62] proposed DataQuilt to provide
designers an iterative workflow to design pictorial visualizations with images like paintings and
photos. However, the existing works target at creating static image-style infographics, which is
different from embedding visualizations in dynamic video shots. For example, the embedded area
and visualizations must be chosen in advance, which could be a tedious task for designing data
videos. Instead, our approach considers the relationships between video context and visualizations,
which enable us to automatically determine the embedded areas and visualization types.

2.3 Label Placement

The problem of embedding visualizations into 2D video context is similar to the label placement
issue in videos [27, 30, 37, 49]. Mei et al. [37, 49] developed VideoSense that determines the inser-
tion points in the video timeline according to the contextual relevance between inserted advertise-
ments and video content. Hu et al. [27] proposed an approach to present subtitles of conversations
near to the characters in videos. Kurzhals et al. [30] introduced novel methods to dynamically place
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subtitles or captions in videos according to the viewer’s real-time gaze. However, these approaches
are not sufficient for embedding visualizations into videos. First, the previous studies either focus
on the specific scenarios like dialog scenes [27] or merely considered text labels (e.g., subtitles [27]
or captions [30]). Due to the different scenarios and inserted objects, the DCs of the existing works
are not enough for embedding data visualizations into videos because the visualizations are far
more informative than text labels. For example, a data visualization not only includes textual la-
bels but also provides graphical elements that should be colored according to video scenes. To
integrate such informative visualizations, a more comprehensive design space must be considered,
which is still unknown in the existing studies. Second, the goal of label placement is to insert in-
formation without disturbing original videos, whereas the goal of VDE is to balance visualizations
and video content because both are important components of the final videos. On the one hand, it
is necessary to place visualizations in a proper area without hindering the presentation of other
visual referents in videos. On the other hand, it may be desirable to highlight data visualizations
because they can reveal data patterns in a more expressive way. Thus, it is inevitable to achieve a
trade-off among different design factors, which makes the design of VDE much more complicated
than existing label placement issues.

2.4 Layout Optimization

The layout optimization problem has been a hot research issue in the multimedia community for
a long time. Yadati et al. [59] proposed a novel approach that is established on consumer psychol-
ogy rules and considers affective factors, such as valence and arousal, to insert advertisements in
videos. However, these methods do not always take the aesthetic aspect of embedded layouts into
account, which can be inspired by the studies of the single-page layout optimizations [39, 40, 60].
Optimizing a single-page layout is a non-trivial issue that needs to be solved by considering various
aesthetic design principles, including visual balance [33], alignment [10], and style harmony [61].
Based on these aesthetic principles, Purvis et al. [42] proposed a genetic optimization method for
the layout of personalized documents, whereas O’Donovan et al. [39] introduced a pixel-based
approach that automates single-page graphic designs and developed DesignScape [40] to provide
layout suggestions to novice designers. However, their approaches are time consuming and do
not take proximity and temporal coherence into consideration, thereby making them unsuitable
for video generation. Yang et al. [60] developed a template-based approach for layering the text
labels on top of a background image. Yet the magazine-style layouts cannot be directly applied
in the designs of embedded visualizations since visualizations are much more informative than
text information. To facilitate an efficient generation of VDE, we employ an object-based opti-
mization model that produces visually appealing and aesthetically pleasing layouts for embedded
visualizations in a video context. We consider a more comprehensive set of design principles, in-
cluding balance, alignment, proximity, readability, and temporal coherence. Moreover, our model
also considers the contextual relevance between in-video data visualizations and the respective
visual referents to optimize the embedded layouts.

2.5 Video Generation

Creating videos manually is tedious and requires significant human effort. Researchers have pro-
posed various (semi-)automatic approaches [16, 53, 54] to facilitate the efficient generation of dig-
ital videos. Ngo et al. [16] employed a Markov chain model to balance the content and perceptual
quality of video shots. They then aggregated shots with high attention values into a new video. We
follow the same idea, but we first translate the source materials into shots before aggregating shots
into a complete video. To facilitate music composition [11], various approaches [53, 54] have been
developed to match shots to the music rhythm. Wang et al. [54] introduced a novel music-centric

ACM Transactions on Interactive Intelligent Systems, Vol. 12, No. 1, Article 4. Publication date: February 2022.



4:6 T. Tang et al.

Fig. 2. System pipeline: preprocess input materials (a), optimize embedded layouts and shot durations (b),

render visualizations and motion effects (c), and encode videos through composing shots and music (d). User

commands are incorporated to facilitate the iterative editing of output videos.

approach that aligns shots according to the semantic boundaries of the music clips. A highly ad-
vanced model [53] was further developed to select a subset of shots that best match music beats in
terms of time differences. However, these music-centric models may abandon some shots during
the optimization process. To fully use shots, we propose a video-centric model that optimizes the
match between the shots and the music rhythm.

3 APPROACH OVERVIEW AND DESIGN CONSIDERATIONS

In this section, we introduce the overall video generation pipeline of SmartShots (Figure 2) and
then summarize the crucial DCs of VDE. Our approach is designed to integrate non-verbal video
clips, images, a melody, and a text file that describes tabular data in the JSON format to create VDE.
To fully explore the design space and collect the DCs of VDE, we collaborated with a group of five
experts from various backgrounds, including information visualization (two), design (two), and
video production (one). We selected these experts based on the following considerations. The two
visualization experts were senior researchers who had decades of experience in visual analytics
and design [38]. They could provide the necessary knowledge to answer the questions regarding
visualization design, such as how to craft effective data visualizations in a video context? The two
designers had more than 10 years of experience in graphic/animation design. Finally, the video ex-
pert was a research director in a large corporation, and he was leading a video generation project.
They provided useful answers to some of our questions, like how to improve the aesthetic quality of

VDE? and how to make VDE appeal to ordinary viewers? Our discussions with these experts were
roughly divided into two phases. In the initial meetings, we explored the overall design space of
producing VDE and collected professional videos that included at least one embedded data visual-
ization to identify design issues. Based on our findings in this phase, we proposed and iteratively
refined an initial design space to associate the design issues until all these issues were covered.
We then manually crafted VDE and performed a literature review to answer these design-related
questions. Based on our video-making experiences and expert reviews, we identified the following
design space and DCs.

3.1 Dimension I: Visualization

Given that “a picture is worth a thousand words,” data visualization shows great potential in en-
hancing the video content [38]. This dimension answers the visualization-associated issues.

Q1. How many visualizations are suitable in a shot? Putting data visualizations into videos can
spatially relate data with the physical relevant entities [58], thereby presenting data insights more
effectively. However, such enhancement may also increase cognitive load since viewers must pay
attention to both the data visualizations and the referents simultaneously. Given that animated data

ACM Transactions on Interactive Intelligent Systems, Vol. 12, No. 1, Article 4. Publication date: February 2022.



An Optimization Approach for Generating Videos with Data Visualizations Embedded 4:7

Fig. 3. A news video about environment protection is generated by SmartShots: net changes in leaf area

(a), increases of forest area (b), comments on social media (c), and distribution of greening changes (d). The

DCs guiding the video generation are highlighted. White dashed and solid boxes are labeled to identify

visualizations and their referents. The timeline (e) presents shots’ duration, and the white gaps between

shots are the detected music beats aligned with shot transitions.

visualizations may catch viewers’ attention [9], they may also distract from the original video con-
tent. Thus, a trade-off exists between enriching videos and limiting the number of visualizations.

DC1. Insert one data visualization for each shot. According to our observations from the
professional data videos and the experiences of the manually crafted VDE, a data visualization is
informative enough to be presented in one shot. The experts suggested “it may exceed viewers’
cognitive ability if they watch multiple visualizations concurrently.” To well balance embedded
visualizations and video content, we follow this empirical rule that only inserts one data visualiza-
tion for each shot (Figure 3(a)).

Q2. What kind of visualizations are applicable for videos? Although various visualizations have
been developed to deal with different types of data and tasks [38], how to choose a proper one re-
mains an unsolved challenge [56]. Complicated data visualizations may be able to handle complex
analytical tasks but can also lead to heavy perceptual burden, especially played in a video context.

DC2. Use simple visualizations that are easy to follow. The experts indicated that “videos
should avoid unfamiliar and complex visual designs to appeal to ordinary viewers.” Moreover,
previous studies also introduced well-established guidelines [25] for animated visualizations and
summarized commonly used visualizations for data videos [9]. Inspired by these works, we em-
ploy the common visualizations, namely line chart, bar chart, pie/donut chart, and pictographs. To
further increase the expressiveness of the library, we develop variants of the basic visualizations
by changing their visual glyphs or orientations and finally obtain 15 visualizations (see Figure 6(f)
later in this article).

Q3. How does the style of data visualizations interact with the video content? Color design plays an
important role in creating data visualizations where the effectiveness principle [38] is the primary
consideration [55]. However, the color design for in-video data visualizations must consider the
influences of the periphery objects. Different color schemes are preferred on a “case-by-case” basis.
For example, harmonic colors can be used to avoid the intrusiveness of graphic designs, whereas
contrasting colors may be favorable for highlighting embedded entities.

DC3. Color visualizations to keep in harmony with videos. Our goal is to ensure that view-
ers could pay equal attention to both visualizations and video content instead of focusing on one
side. Since some intelligent methods [60] are developed to balance embedded visualizations and
video content, we adopt them to obtain harmonic colors for in-video visualizations (see Figure 3(c)).

3.2 Dimension II: Embedded Layout

Properly positioning data visualizations in a shot results in an embedded layout. In contrast to
optimizing single-page layouts [39, 42], the positions and sizes of the visual referents in videos are
fixed. This dimension discusses the design issues of an embedded layout.
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Q4. How to guarantee the aesthetic quality of embedded layouts? Artists have proposed various
high-level aesthetic principles for graphic design [61, 63]. However, the design of embedded lay-
outs is different because the position of visual referents are fixed. Thus, it remains unclear for
embedded layouts what kind of aesthetic principles should be followed.

DC4. Follow basic aesthetic principles when placing data visualizations. Pursuing the
high aesthetic quality of videos is critical since the general goal of videos is to attract viewers.
The experts commented that “the crucial criterias for designing embedded layouts were aligning
the visual objects and balancing their visual weights.” Therefore, we employ the two layout prin-
ciples (see Figure 3(a)), namely balance [33] and alignment [10], to optimize embedded layouts.

Q5. How to preserve the semantic links between visualizations and referents? The semantic rela-
tions between the in-video visualizations and the respective referents are often conceptual and
usually defined by users [58]. Some visual linking methods can reveal such semantic relation-
ships intuitively. For example, users can use lines or shapes to connect or group visualizations and
referents.

DC5. Place data visualizations next to the referents. Although the explicit linking methods
can reveal semantic relationships visually, they also introduce additional visual labels that may
hinder the presentation of both the data visualizations and the video content. The experts indicated
that “an alternative way was spatially placing visualizations and referents to reveal the hidden
relationship.” According to gestalt principles [50], we adopt proximity [32], which indicates the
underlying relationships by putting visualizations close to the referents (see Figure 3(b)).

Q6. How to choose the spatial anchor point of visualizations? Random placement of embedded
visualizations may result in an illegible layout, which may break viewers’ mental map and decrease
engaging feelings. Determining the proper positions in videos for data visualizations poses a great
challenge since many design factors should be considered.

DC6. Place data visualizations in the spare space. White space is a fundamental element
in graphic design that is associated with the readability principle [39]. To maintain the readability
of embedded layouts, we place data visualizations in a space that is not occupied by the salient
visual objects of videos (see Figure 3(c)). Otherwise, in-video data visualizations may hinder the
presentation of the original video content and prevent the dissemination of important information.

DC7. Place data visualizations displayed at consecutive shots in the same region. Gen-
erating embedded layouts in different shots without considering the stability of videos may lead to
poor-quality results. For example, data visualizations embedded in consecutive shots may appear
in opposing positions in videos, thereby breaking the mental map of viewers. The experts sug-
gested that “video captions should always appear at the bottom, which could inspire the design of
embedded layouts.” We place the consecutively displayed data visualizations in the same region
to maintain the coherence of videos (see Figure 3(d)).

3.3 Dimension III: Rhythm

When assembling data shots into a complete video, identifying the correct timing of shot transi-
tions presents a challenge because (1) the durations of data shots build on images are unknown
and (2) the extent to which the shots can be shortened or elongated is unclear. Our dimension of
rhythm intends to address these issues and determine the time points of shot transitions precisely.

Q7. How to determine the shot durations according to the music rhythm? One method to determine
shot durations is evenly dividing the timeline according to the number of shots, which may produce
extreme short shots when dealing with a large number of video clips. It is difficult to keep viewers
oriented and ensure they understand the visualization within a limited time if the shot is too short.

DC8. Elongate or shorten data shots properly to match music beats. There are two situa-
tions to consider. First, for data shots built on images, we employ animations to simulate a sense
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of motion. The experts commented that “each shot should have sufficient time to be played.” Ac-
cording to our video-making experiences, we set the default duration of those shots to 4seconds.
Second, for data shots built on video clips, we keep the original duration before assembling them
into the final video. Real-world videos are often accompanied by music to promote user enjoyment
and satisfaction. To inspire more engaging feelings for the viewers, we assemble data shots accord-
ing to the music rhythm. To ensure that the shot transitions are in line with the music beats, we
slightly elongate or shorten both types of data shots whenever needed (see Figure 3(e)).

4 VIDEO GENERATION APPROACH

In this section, we formulate the design of VDE as an optimization problem and introduce in-
video visualization designs. To find satisfactory visualizations, generate appealing layouts, and
determine suitable durations for data shots, we propose a set of energy functions in accordance
with the preceding DCs. We also present an efficient solver and employ a dynamic programming
algorithm to address the optimization problem.

4.1 Problem Definition

To produce VDE via optimization, we define the problem as follows: given m data shots S (D) =
{Si (Di )}mi , optimize (V ,X ,T ) by

min
V ,X ,T

E (V ,X ,T ) = Emusic (T ) +
m∑

i=1

Eshot (Vi ,Xi ), (1)

where E (·) represents an energy function and D = {Di }m1 represents the input data. According to
DC1, each shot should only contain one data visualization. For simplicity, we allow the data Di to
be null. V = {Vi }m1 and X = {Xi }m1 denote the visualization and layout designs for the shot Si , and
T = {ti }m1 denotes the durations of S .

The optimization problem Equation (1) is decomposed into two subproblems, namely shots-
music composition Emusic and shot-layout optimization Eshot , which can be solved independently.
For the data shot Si , the shot-layout problem is further decomposed into a set of single-frame
layout problems:

Eshot (Vi ,Xi ) =
Ki∑

k=1

E (k )
f r ame

(Vi ,Xi ;θi ,Xi−1), (2)

where Ki refers to the total number of frames in the shot Si , E
(k )
f r ame

denotes the energy function

defined in thekth frame,θi denotes the model parametersθi = [ω̄,ωb ,ωa ,ωp ,ωr ,ωc ] (Equation 11),
and Xi−1 represents the layout design of the previous data shot. The single-frame layout problem
will be further decomposed into five optimization components, which are detailed in Section 4.3.

4.2 Visualization Design

Choosing suitable visualizations for the input data in the given video context remains a big chal-
lenge. On the one hand, the various data types and the aims of presenting the data need to be
considered. On the other hand, the chosen visualization should also fit the video context without
affecting the aesthetic quality. To reduce the difficulty, we introduce the visualization design V in
Equation (2). Our main idea is to first collect a set of visualization templates and then select the
optimal one for the input data via optimization. To optimize the visualization designV , we extract
the bounding box [wv ,hv ] and visual center [cxv , cyv ] for each visualizationv (Figure 4). In accor-
dance with DC2, the visualization v is defined as one of the 15 visualization types shown later in
Figure 6(f). To maintain the simplicity of the mathematical notations, we denote wv ,hv , cxv , cyv
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Fig. 4. Semantic analysis for the video context. Only one visual object is presented for illustration. The black

rectangle refers to the viewport [W ,H ]. The bounding boxes [wq ,hq ] and [wv ,hv ] of visual object q and

visualization v are labeled. The shadow region is abandoned after the resize-and-cut stage.

as hidden variable hv because these variables are associated and determined by the visualization
typev . We then define the visualization design asV = [v,hv ] = [v,wv ,hv , cxv , cyv ]. We also adopt
growing motion [9] to animate in-video data visualizations and highlight the increasing trends in
the data. According to DC3, harmonic colors should be applied for in-video data visualizations to
avoid intrusiveness. Inspired by previous studies [18, 51], we acquire several color templates from
ColorBrewer [24] and then extract the main color of a data shot. Afterward, we pick the harmonic
colors [51] from the templates according to the extracted one.

4.3 Embedded Layout Optimization

To optimize the visualization design V and obtain the embedded layout X , we define a set of en-
ergy functions according to high-level aesthetic principles. To incorporate these energy terms, we
further extend Equation (2) as

Eshot (Vi ,Xi ) =
Ki∑

k=1

E (k )
f r ame

(vi ,pi , p̃i ;θi ,hi ,Xi−1), (3)

where the layout design is defined as Xi = [pi , p̃i ] with pi = [xi ,yi ] denoting the position of an
embedded data visualization and p̃i = [x̃i , ỹi ] denoting the position of video viewport. The input
shots may be in different sizes. Thus, we employ a resize-and-cut scheme [60, 63] to normalize
these shots. As shown in Figure 4, the frames of these shots are initially resized to match the
shortest edge of the viewport while preserving their aspect ratio to avoid distortion. The viewport
then moves along the longest edge and cuts the frames to match the output video size specified by
users denoted as [W ,H ].

4.3.1 Energy Function. In accordance with DC4 through DC7, we extract five high-level aes-
thetic principles, namely balance, alignment, proximity, readability, and coherence, and then pro-
pose five energy terms. Afterward, we define the single-frame layout optimization problem
through a linear combination of these energy terms.

Contextual relevance. Two challenges may be encountered when embedding a visualization
into a video frame. First, we need to understand the contents of the frame. Second, we should
determine to which visual object in a frame the visualization is referring. We employ an advanced
computer vision technique [28] to extract object-level semantic information, including the bound-
ing box and semantic labels of the visual objects (see Figure 4). Following the same notations
presented in Equation (3), we denote the bounding box and visual center of the visual object q by
[wq ,hq] and [cxq , cyq], respectively. We assume that each data shot should only have one referent.
To determine the referent, we follow the majority principle that the visual object with the most
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Fig. 5. Algorithm illustration. The blue rectangles represent visual objects/referents in a frame, the solid red

rectangle represents a visualization to be inserted, and the dashed red rectangle indicates the position of

the visualization after optimization. The mathematical notations used by different aesthetic energy terms

are highlighted. (a) Balance: the symmetry center is highlighted at the geometric center of the viewport.

(b) Alignment: the misalignment of the right and top edges is penalized. (c) Proximity: the distance between

the visualization and referent is shortened. (d) Readability: the overlapping region colored by shadows is

minimized. (e) Coherence: the visualization moves to the insertion position in the last shot.

repetitive semantic labels among all shots should be the referent. For shots without the referent,
we choose the largest visual object as the alternative.

Balance. To satisfy DC4, we first describe an energy item for the balance principle [33], which
refers to the spatial equilibrium of visual objects in a single-frame presentation. Symmetry bal-
ances, including left-right and top-bottom symmetries, are often used to evaluate graphic de-
signs [61]. We measure the balance quality of the embedded layouts from both the horizontal
and vertical directions. To simplify the computation, we obtain the visual center by calculating
the geometry center that cx = w/2, cy = h/2. In case users want to highlight visualizations or the
other visual objects, we provide a parameter ω to enable the direct control of the visual weights
for the visualizations. If ω increases, then the visualizations would be strengthened and occupy
a larger space in the central region of the viewport. Suppose there are Q objects in a frame; we
define balance by

Ebalance =

[
ω (xi + cxvi

) + (1 − ω)

∑
q (xq + cxq )

Q
−
(
x̃i +

W

2

)]2

+

[
ω (yi + cyvi

) + (1 − ω)

∑
q (xq + cyq )

Q
−
(
ỹi +

H

2

)]2

.

(4)

Alignment. To satisfy the alignment principle [10] of DC4, we define an energy term that con-
siders six alignment types, namely left, right, top, bottom, and vertical- and horizontal-center [39].
Only one alignment type, denoted by a, can exist between a visualization vi and a visual object q.
To align visualizations and visual objects as much as possible, we define an energy term to penalize
the misalignments:

Ealiдnment =
1

Q

∑
q

argmin
a

Ca (vi ,q), (5)

where Ca (vi ,q) denotes the misalignment distance defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(xi − xq )2, i f a = le f t

(xi +wvi
− xq −wq )2, i f a = riдht

(yi − yq )2, i f a = top

(yi + hvi
− yq − hq )2, i f a = bottom

(cxvi
− cxq )2, i f a = vertical center

(cyvi
− cyq )2, i f a = horizontal center .

(6)
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Proximity. On the basis of DC5, we introduce an energy term to ensure the proximity between
visualizations and the referents. We obtain the horizontal (HD) and vertical (VD) relative distances
of the visualization vi and its referent r by

HD (vi , r ) = min{xi +wvi
,xr +wr } −max{xvi

,xr }
VD (vi , r ) = min{yi + hvi

,yr + hr } −max{yvi
,yr }.

(7)

To penalize the relative distance between a visualization and its referent, we first determine their
relative directionM as reflected in their alignment type (Figure 5(c)).M is equal to 1 if the alignment
type is left, right, or vertical center and is equal to 0 otherwise. We then define an energy term to
maintain proximity as follows:

Eproximity = [M ×VD (vi , r ) + (1 −M ) × HD (vi , r )]2. (8)

Readability. In accordance with DC6, we describe an energy term to minimize the overlaps
between visualizations and visual objects and to fully utilize the spare space. Equation (8) also
penalizes the potential overlap between a visualization and its referent. Therefore, we exclude the
referent to reduce abundant computations. For a visualization vi and a visual object q, we define
an energy term to penalize the overlaps as

Er eadabil ity =
1

Q

∑
q�r

max{0,HD (vi ,q)} ×max{0,VD (vi ,q)}. (9)

Coherence. According to DC7, we optimize the embedded layouts in the consecutively dis-
played shots where the visualizations should be located close to the same insertion point to main-
tain viewers’ mental map. We define an energy term as

Ecoher ence = (xi − xi−1)2 + (yi − yi−1)2. (10)

To optimize the embedded layout in a single frame, we define the energy function using a weight-
ing scheme:

E (k )
f r ame

(vi ,Xi ;θi ,hi ,Xi−1) = ωbEbalance + ωaEaliдhment

+ωpEproximity + ωrEr eadabil ity + ωcEcoher ence .
(11)

4.3.2 Optimization Solver. The intra-shot optimization problem (Equation (2)) is a mix-type
problem that cannot be simply solved by continuous solvers. We employ a two-stage strategy in
which we first develop and establish a common convex optimization solver on a gradient descend-
ing algorithm for a given visualization type. We then traverse all visualization types to determine
the optimum one with the lowest energy value and obtain the corresponding embedded layout.
However, directly searching such a huge solving space of Equation (2) is time consuming. Given
that this equation is further decomposed into a set of single-frame optimization problems (Equa-
tion (11)), we employ a sampling scheme to extract the key frames and improve optimization effi-
ciency. To optimize the energy function defined in Equation (11), the gradient descending solver
heavily relies on the initial value and easily converges to a local optimum. We employ a random
seeding method that randomly picks several initial positions from the spare space to perform an
optimization. The model parameter θi = [ω̄,ωb ,ωa ,ωp ,ωr ,ωc ] is specified by users to obtain sat-
isfactory layouts. In our experiments, we observe users prefer occlusion-free and aligned layouts
and tend to balance visualizations and the video content. Therefore, the default parameter is set
to θi = [0.5, 1, 3, 1, 5, 1].
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4.4 Shots Composition

After obtaining optimum visualizations and optimizing embedded layouts, we further compose
data shots and music. LetT = [t1, . . . , tm] denote the shot durations and Bl = [b0,b1, . . . ,bl ] denote
the music beats. We derive the transitions of shots T̄m = [t̄0, t̄1, . . . , t̄m] through t̄i = t̄i−1 + ti . In
accordance with DC8, the shot transitions should match the beats of the input music. Thus, we
define the energy function of Equation (12) as

minEmusic (T ) = −M (t̄m ,bl ), (12)

where M (·) is the maximum number of matched data shots.
To avoid the compression loss of data shots, the following border conditions must be satisfied:

t̄0 = b0 = 0 and t̄m < bl . Given that the transitions {t̄i }m1 may not strictly match the beats {bj }l1 due
to time differences, we slightly elongate or shorten the data shots that built on images to perfectly
match beats (DC8). We define the matching function of t̄i and bj as

match(t̄i ,bj ) =
⎧⎪⎨⎪⎩

1, i f |t̄i − bj | < α ∗ ti
0, otherwise,

(13)

where α is a threshold and set to 0.1 in our case. There exists a possibility that t̄i matches two
adjacent beats bj and bj+1 according to Equation (13). Thus, we propose a heuristic that the closest
beat should be selected.

For any m and l , the shot transitions T̄m and the music beats Bl represent two sequences. The
problem of finding the maximum matching beats and shots is identical to obtaining the LCS
(longest common subsequence) [19] of Bl and T̄m . Thus, the inter-shots composition problem is
converted into a typical LCS problem that is defined as

M (t̄m ,bl ) =
⎧⎪⎨⎪⎩

max{M (t̄m−1, bl−1) +match(t̄m , bl ), M (t̄m , bl−1), M (t̄m−1, bl ) }, ifm, l > 0

1, ifm, l = 0.
(14)

We solve the recursive function via dynamic programming. If [t̄i0 , t̄i1 , . . . , t̄ik
] is the obtained match-

ing sequence that corresponds to music beats [bj0 ,bj1 , . . . ,bjk
], then we update shot durations by

tin
= bjn

− bjn−1 , n = 1, . . . ,k . However, some shots cannot be updated (k < m) because of
insufficient music beats or a transition-beat mismatch. In this case, we adopt a weighting alloca-
tion scheme to update the mismatched shots. For example, two adjacent shots can be updated by

t ′ik−1 =
tik −1

tik −1+tik

(bjk
−bjk−1

) and t ′ik
=

tik

tik −1+tik

(bjk
−bjk−1

) when they do not match the music beats.

5 SMARTSHOTS

This section presents SmartShots, an automatic system that facilitates the easy creation of VDE.
SmartShots consists of three components, namely material, timeline, and preview, to create a min-
imalist interface (Figure 6). Users first upload data tables and other multi-media materials (Fig-
ure 6(h)) using the material panel (Figure 6(a)). To construct stories, users can then drag and drop

any entity from material to timeline. To distinguish the chosen entities, shots are surrounded by
colorful labels and placed in the middle of the timeline (Figure 6(b)). SmartShots also enables users
to adjust the aesthetic parameters (Figure 6(g)), and preview and export videos (Figure 6(c) and
(e)).

We implement SmartShots using a client-server architecture that comprises a backend that runs
the optimization model to generate videos and a web interface that allows users to edit the output
videos. The web interface is built in the TypeScript [12] and React framework [4], which supports
the uploading of multi-media materials and the editing of videos. The backend is implemented
using Python, which integrates librosa [35] to analyze the music rhythm, TensorFlow [5] to facilitate
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Fig. 6. SmartShots: material with data tables (a), timeline for constructing stories (b), video preview (c), video

encode & export (d, e), data visualization selection (f), adjusting of aesthetic parameters (g), shot selection

(h), and motion effect selection (i).

object detection [28] with a pre-trained model [43], and OpenCV [3] to process images and videos.
We also develop a canvas renderer built in Chrome and two well-established JS libraries (D3 [13]
and G2 [2]) to render animated visualizations.

6 USE CASES

In this section, we craft three use cases, including a news video, an introductory video, and an
advertisement, to demonstrate the usage and generalizability of SmartShots.

Environment news. By using SmartShots, we craft a video (see Figure 3) about an environment-
related news item that reports the progress that China and India have achieved in land green-
ing [23]. We collect pictures and short videos about forests and trees to illustrate the beauty of
a green environment. Crucial data about how China and India became leafier and people’s opin-
ions on this change are exhibited. Such data include net changes in leaf area from 2000 to 2017,
increases of forest areas in east Asia, the distribution of greening changes, and comments on social

media, according to the reports [15, 20]. This information can increase the video’s persuasiveness
and attract viewers’ attention. Thus, we decide to integrate the information in the video. In to-
tal, the source materials include three video clips, four images, one JSON file that stores the data
mentioned previously, and one music melody without lyrics.

To make such a news video with supporting data information, we first upload all source mate-
rials to SmartShots. Then, we arrange the order of data shots for the story: the net changes in leaf
area is put at the beginning to inspire viewers’ interests and show that these areas are greening;
then the increases of forest area and people’s social media comments are presented in the next
shots; finally, the distribution of greening changes are shown to highlight the great achievements
made by the two Asian countries.

After the arrangement of the order of images, videos, and data, SmartShots automatically gen-
erates a video. It chooses a bar chart to show net changes in leaf area and places it at the bottom
right of the shot to balance the layout (DC4). The forest area is shown by a line chart to ensure that
viewers can easily notice its rapid expansion. Notice that SmartShots places the line chart next to
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Fig. 7. Use cases. (a) A chocolate advertisement is created to demonstrate the diverse visualizations that

SmartShots can support. (b) A university introductory video is crafted to indicate that SmartShots can be

applied to various use scenarios.

the referent (DC5)—the leaf. In the next shots, SmartShots presents a word cloud of people’s com-
ments and uses a donut chart to show the distribution of greening changes, which is aligned with

the referent at the bottom edge (DC4). Moreover, these two consecutive visualizations are embedded

in the same area (DC7)—the bottom left of the shots. The four visualizations are embedded in the

spare area (DC6) to ensure that the referent is visible.
Finally, we fine-tune the aesthetic parameters of the embedded layouts and add motion effects

to animate the images.
Advertisement. We create a chocolate advertisement video (Figure 7(a)) to show that

SmartShots can support the creation of advertising videos. The goal of advertisements is to pro-
mote products. Thus, we collect some relevant information about chocolates, such as the taste
and nutrition facts, and customers’ reviews. To integrate the information in the video, SmartShots
embeds a single visualization in each shot (DC1) and supports common and intuitive visualizations

(DC2). Specifically, it uses a star-glyph bar chart, a filling bar chart, and a flower-based donut chart

to present data insights. SmartShots also automatically extracts the main color of the video and
generates visualizations with harmonic colors (DC3).

University introduction. We create an introductory video of a famous university to show that
SmartShots can be applied in diverse use scenarios and supports various visualizations. This video
is used to attract more registrations. Thus, we want to greatly enhance such an introductory video
through the history of the university, the distribution of the students, the scientific achievements,
and school revenues. These source materials are uploaded to SmartShots. Different from the pre-
vious cases, we manually select the visualizations for the data information of the university. We
choose the following: a dot chart to highlight significant historical events for the school library, a
bubble bar chart to indicate the student diversity, a radial chart to reveal the number of the Nobel
winners from the university, and a triangle plot to reveal the school financial status. We arrange the
order of shots with which the information appears together. After that, SmartShots automatically
aggregates these shots and optimizes the embedded positions for the chosen visualizations. Addi-
tionally, as shown in Figure 7(b), the transitions of shots match the music rhythm perfectly (DC8).

7 EVALUATION

In this section, we first evaluated the efficiency of the proposed approach. Then, we validated the
effectiveness and usability of SmartShots through semi-structured interviews with both experts
and amateur users who are novice video makers in video editing skills or tools.

7.1 Quantitative Analysis

To better understand the time efficiency of SmartShots, we conducted quantitative experiments
on a desktop computer that is equipped with a 3.4-GHz CPU and runs Windows 10. We measured
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Fig. 8. Time costs of the creation processes for the three use cases, namely news, advertisement, and intro-

ductory video.

the time performance of SmartShots when generating the three use cases in terms of different
resolution. We recorded the time cost of each stage (see Figure 2). We repeated the time recording
of SmartShots three times and calculated the average time cost to avoid the potential influence
of CPU scheduling. As shown in Figure 8, the bottleneck of SmartShots is the rendering stage.
The optimization stage spends 6.2 seconds per data shot on average, which indicates that the
optimization method is efficient (see orange bars in Figure 8). Although the average time cost (2.2
minutes) of the video generation seems to be a little long for SmartShots, the experiments were
conducted on a personal computer and the implementation of SmartShots is not fully optimized
for time performance.

7.2 User Study

To evaluate the usage of SmartShots, we conducted user studies and collected qualitative
feedback.

7.2.1 Participants. We invited six participants, including three designers (D1 through D3) and
three amateur users (U1 through U3). Their average age was 25 years (range = 20 − 33 years). All
the designers had extensive experience in UI/UX design and were familiar with professional video
tools. None of them were involved in our previous studies. All the amateur users reported having
no prior experience in authoring videos or visualizations.

7.2.2 Procedure. First, we showed participants the process of creating a use case (see Figure 3)
(10 minutes). Second, participants were asked to freely explore SmartShots until they were familiar
with the interactions (5 minutes). Third, they were asked to make a new VDE using given materials
(20 minutes). The materials included three images, three video clips, one non-lyrical music, and one
JSON file that records tabular datasets. Participants needed to upload the materials to SmartShots
and then edit their VDEs. They could select shots and bind data into some chosen shots. They could
also make some adjustments, including the story timeline, motion effects, data visualization types,
and aesthetic parameters according to their preference. They were allowed to update the authoring
results iteratively. In the end, we discussed with each participant about their user experiences
and the usability of SmartShots (25 minutes). The user studies and interviews were conducted
independently with each participant.

7.2.3 Results. The outcome of user interviews can be summarized as follows.
• Authoring process: We observed the authoring process of the participants. They first uploaded

all the source material to SmartShots and spent 10 minutes on average to construct the data
stories using the timeline panel. They added/removed shots and changed the order of shots
to create appealing stories. They also bound data tables to different shots to enhance the
narrative. After that, they invoked the optimization module to generate VDEs. Due to the
benefits of the automatic workflow (see Figure 2), the participants did not spend time dealing
with low-level design tasks, such as cropping images or videos to normalize their sizes. After
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obtaining the output videos, the participants would try different optimization parameters to
adjust the embedding layouts. For example, U2 preferred to assign the visualizations in the
same place, so he turned up the coherence parameter, which generated a similar visualiza-
tions layout in each shot. But in most cases, they used the default parameters because the
output matched their design knowledge (D1, D3) or seemed in a reasonable form (D2, U1, U3).
Some participants would also change the shots for better storytelling and refine the VDEs
iteratively. According to the feedback from participants, all of them were satisfied with the
final VDEs created by SmartShots.
• User experiences: In general, all of the participants liked the minimalist interface and easy-to-

use interactions of SmartShots. They had similar comments that it was very easy to generate
VDE by using SmartShots. As D1 and D2 commented, “SmartShots makes it quite easy to
integrate data charts into videos,” and all designers agree that SmartShots could save their
efforts in designing videos. For example, Montage is a typical method in film-making that
combines a series of video shots into a sequence, which can be efficiently completed using
SmartShots. U3 complimented this: “I love the idea that users only need to bind data for
shots and a video will be created in a few minutes.” Moreover, U2 was impressed by the
automatic composition of music and commented that “the beats of video transitions make
the whole video more affective.” D3 also complemented, “I love the ideas of mixing music
and data visualizations which produces an engaging feeling.” These comments support the
effectiveness of the music-video composition method.
• User creativity: We are also interested in whether the optimization module could inspire de-

signers’ talents and facilitate video designs. Altogether, the designers of the participants had
shown great interest in the optimization model. They agreed that SmartShots can be used
as a fast prototyping tool to achieve some design ideas without too much effort. For exam-
ple, both D1 and D2 provided a potential usage that designers could first try different de-
sign alternatives using SmartShots and then choose the most promising design for further
development.
• Improvement: The participants also suggested several improvements for SmartShots. First, the

video preview panel should enable users to navigate or fast-forward the output videos. Second,
the timeline panel only supports shot-level manipulations while ignoring inter-shots opera-
tions. It could be better for users to add transitions between two consecutive shots. Third,
the data visualizations can be animated according to music rhythm. We plan to implement
these features as future works to further improve SmartShots.

7.3 Expert Interview

To evaluate the effectiveness of SmartShots, we conducted semi-structured interviews with two
experts. The first expert was a university teacher (ET) who taught students to make digital videos
with professional tools. He can evaluate the output videos of SmartShots from the design aspect
and compare SmartShots with the other existing tools. The second expert (ED) was the research
director, who also participated in the discussions of the DCs. He was the only expert involved in
the design space analysis of VDEs and served as one of the co-authors due to his contributions. He
can evaluate the system development of SmartShots. The interviews include a 20-minute demon-
stration of SmartShots and use cases and a 40-minute discussion.

ET mainly focused on the design of the use cases and agreed with the optimization goals that pur-
sue aesthetic layouts for embedded visualizations. He appreciated the coherence goal of our model,
“viewers are accustomed to obtaining information according to their past experiences. Thus, it is
necessary to present visualizations in the same region of videos.” As for the comparison with pro-
fessional tools, he commented, “SmartShots is definitely more efficient and intelligent.” To discuss
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this, he demonstrated to us a general design procedure for manually creating such a data video.
Designers first analyze data using analytic tools (e.g., Excel) and select a suitable visualization for
the data. Then, they search for an appropriate position, craft motions with professional tools, and
fine-tune iteratively. Thus, it usually takes hours to generate a data video. However, that can be
shortened greatly using SmartShots—it only needs a few minutes to generate such a video. Never-
theless, ET thought that “professionals may still prefer the advanced tools since these tools support
more powerful functions, such as editing frames.”

ED commented on the system development of SmartShots. He was impressed by the optimiza-
tion module that produces appealing embedded layouts and commented that “the layouts seem to
be all right since they avoid the occlusion with products skillfully.” In general, he confirmed the
usefulness and the intuitiveness of the interface but also pointed out that “it is tedious to bind data
manually if there are many shots and datasets.” To address the scalability issue, we plan to employ
a heuristic method to support automatic data binding. The idea is to construct data shots accord-
ing to the semantic connections. For example, we can extract the semantic labels from the video
content and then calculate the similarity between the semantic labels and the textual information
of data tables, such as table title or data attributes. The shots can be associated with data tables
according to their similarity scores.

8 DISCUSSION

In this section, we thoroughly discuss the implications and limitations of this study, along with
the potential usage of SmartShots.

Implications. The implications of this work are twofold. First, to the best of our knowledge,
we are the first to focus on the design of VDE. To fully explore the design space, we systemati-
cally study design issues related to this new form of data videos [9, 45] with a group of experts.
We further propose a set of DCs to answer these issues from three dimensions, namely visualiza-

tion, embedded layout, and rhythm. The DCs can be applied as fundamental guidelines to inspire
designers in creating effective VDE. Second, VDE effectively reflects the concept of visualization

for mass with the explosive development of video marketing. However, creating such information-
rich videos manually is difficult because users need to select suitable data visualizations, fit them
in the video context (e.g., arrange positions), and finally generate a new video that integrates data
visualizations, images, video clips, and music. To ease the difficulty, we develop SmartShots, which
can make this new form of data videos more accessible and serve numerous amateur users and
audiences.

Potential usage. With the explosive development of the video market, it is difficult to make
a video stand out from the crowd. Yet the data-driven videos provide a promising paradigm that
could inspire video creators to improve their works. Expect for generating VDEs, SmartShots is po-
tential to create other types of videos. In the expert interview, the experts provided some promising
uses of SmartShots, which are summarized as follows:

• Social videos: Video blogs, or vlogs [57], which integrate text, images, and short videos to
present life moments, are well received on social media recently. SmartShots integrates an
optimization model to assemble multi-media materials, which can help generate data-rich
vlogs (e.g., exercise videos with calorie consumption).
• Live videos: Enriching live videos, such as online TED Talks, had a great potential to

make SmartShots more accessible. A similar case is the Gapminder video [44]. In addition,
SmartShots could be further improved to enhance the increasingly popular live videos hosted
by social media influencers to promote products where numerous audiences would be served.
Although we currently focus on offline video generation, we would like to explore how to
extend SmartShots to embed visualizations in a live video stream.
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Limitations. We summarize three limitations of SmartShots. First, the optimization results may
be heavily affected by inaccurate semantic information. For example, mislabeled bounding boxes
may result in undesired layouts that cover salient objects in videos. Thus, we plan to employ a
more advanced deep learning model to improve the accuracy of the semantic analysis. Second, the
optimization model mainly focuses on the contextual relevance and aesthetic principles when de-
termining the visualization type and the insertion point of data. However, the complexity of data
representation and the underlying insights are also vital design factors when choosing a suitable
visualization [38], which is difficult to formulate due to the richness of data. Thus, SmartShots
enables users to manually set data visualizations when the users are not satisfied with the auto-
matically generated ones. To further improve SmartShots, we also plan to take the data complexity
and richness into account when optimizing visualizations. Third, SmartShots is not highly opti-
mized for generating long videos with dozens of shots. We plan to improve the time performance
of SmartShots via GPUs. Fourth, we now mainly consider to embed a single visualization into a
video scene. However, there may be some design situations where users want to play multiple visu-
alizations in a single view. Thus, we plan to extend the optimization model to incorporate multiple
embedded visualizations.

9 CONCLUSION

In this work, we thoroughly explore the design space and summarize primary DCs (DC1 through
DC8) to design VDE. Based on that, we formulate the design of VDE as an optimization prob-
lem and propose a set of energy functions. We implement the optimization algorithm and develop
SmartShots that facilitates the automatic generation of VDE. We demonstrate the usage and usabil-
ity of SmartShots through use cases and user evaluations. Our work takes the initial step toward a
deep understanding of how to embed data visualizations in videos, which is full of opportunities
for further studies.
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