
15

SocialWave: Visual Analysis of Spatio-temporal Diffusion

of Information on Social Media

GUODAO SUN, Zhejiang University of Technology

TAN TANG, Zhejiang University

TAI-QUAN PENG, Michigan State University

RONGHUA LIANG, Zhejiang University of Technology

YINGCAI WU, Zhejiang University

Rapid advancement of social media tremendously facilitates and accelerates the information diffusion among

users around the world. How and to what extent will the information on social media achieve widespread

diffusion across the world? How can we quantify the interaction between users from different geolocations

in the diffusion process? How will the spatial patterns of information diffusion change over time? To address

these questions, a dynamic social gravity model (SGM) is proposed to quantify the dynamic spatial interac-

tion behavior among social media users in information diffusion. The dynamic SGM includes three factors

that are theoretically significant to the spatial diffusion of information: geographic distance, cultural proxim-

ity, and linguistic similarity. Temporal dimension is also taken into account to help detect recency effect, and

ground-truth data is integrated into the model to help measure the diffusion power. Furthermore, SocialWave,

a visual analytic system, is developed to support both spatial and temporal investigative tasks. SocialWave

provides a temporal visualization that allows users to quickly identify the overall temporal diffusion pat-

terns, which reflect the spatial characteristics of the diffusion network. When a meaningful temporal pattern

is identified, SocialWave utilizes a new occlusion-free spatial visualization, which integrates a node-link dia-

gram into a circular cartogram for further analysis. Moreover, we propose a set of rich user interactions that

enable in-depth, multi-faceted analysis of the diffusion on social media. The effectiveness and efficiency of

the mathematical model and visualization system are evaluated with two datasets on social media, namely,

Ebola Epidemics and Ferguson Unrest.
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1 INTRODUCTION

With increasing penetration of social media and rapid prevalence of mobile technologies, popular
topics on social media can be diffused among users from different geolocations in either synchro-
nous or asynchronous manners (Kamath and Caverlee 2013; Leskovec et al. 2009). It has been a
popular practice to pool together users from different geolocations in existing studies on informa-
tion diffusion (Zheng et al. 2014). However, this practice does not take into account the differences
on behavioral patterns, linguistic traditions, and cultural values between users in different soci-
eties (Dodds et al. 2015; Ronen et al. 2014). These issues limit our theoretical understanding of the
subtle process underlying information diffusion on social media. Moreover, an increasing demand
for understanding the spatio-temporal characteristics of information diffusion on social media is
observed in various practical scenarios (Bosch et al. 2013; Kamath et al. 2013). For instance, to
efficiently contain the diffusion of rumors on social media, government policy-makers need to
identify the critical geographic areas where and key time windows when the rumors originate
from, become viral, and fade out, which can further help them disseminate the truth to users in
those critical areas and at optimal time points (Cao et al. 2012; Sakaki et al. 2010).

Although theoretically significant and practically necessary, measuring and understanding the
spatio-temporal characteristics of information diffusion on social media is a daunting challenge
in empirical research. Various sets of factors, including temporal, spatial, and user characteristics,
are found to affect information diffusion on social media (Leskovec et al. 2009; Liben-Nowell et al.
2005; McPherson et al. 2001). Thus, the first challenge is how to integrate these factors in a logical
and seamless way into our measurement of the spatio-temporal characteristics of information
diffusion. Moreover, as the spatio-temporal characteristics of information diffusion may exhibit
different patterns when different temporal and spatial granularities are adopted, how to handle the
multi-granularity characteristics in space and time is the third challenge. Last but not least, how
to visualize the spatio-temporal characteristics of information diffusion in an intuitive, interactive,
and insightful way is the fourth challenge we have to face.
In recent years, empirical studies have been conducted to examine the spatio-temporal charac-

teristics of information diffusion on social media (Bosch et al. 2013; Cao et al. 2012; Kamath and
Caverlee 2013; Kamath et al. 2013). These studies focused either on mapping the spatio-temporal
diffusion of raw information on social media (e.g., microblogging messages) (Bosch et al. 2013;
Cao et al. 2012), or on predicting the spatio-temporal diffusion of information with probabilistic
models (Kamath and Caverlee 2013; Kamath et al. 2013). However, there are several limitations
with existing studies. First, these studies implicitly assume that users from different geographic
areas will be influenced by one another in the process of information diffusion. They did not take
the essential temporal, spatial, and user characteristics into account to explicitly quantify the dy-
namic influence between users in different geographic areas. Second, most of the existing studies
examined information diffusion in single spatial granularities (e.g., countries, states, and cities)
or temporal granularities (e.g., week, day, and hour), which leads to different patterns and causes
the difficulty, if not the impossibility, to compare research findings across studies. Third, most of
the existing studies on visualization of information diffusion do not allow for large-scale visual
spatio-temporal exploration (Sun et al. 2014; Viégas et al. 2013; Wu et al. 2014).
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In this study, a model called dynamic social gravity model (SGM) is developed to quantify the
spatio-temporal dynamics of information diffusion on social media. The dynamic SGM is built by
extending the classic gravity model, which is widely adopted in linguistics, economics, and demog-
raphy research (Anderson and van Wincoop 2003; Sgrignoli et al. 2015; Trudgill 1974). Compared
with the classical gravity model, the dynamic SGM has three advantages. First, it simultaneously
takes into account the three important dimensions in spatial diffusion: namely, geographic dis-
tance (Liben-Nowell et al. 2005; Scellato et al. 2010), cultural proximity (Hoftede et al. 2010), and
linguistic similarity (McPherson et al. 2001; Trudgill 1974), which allow researchers to directly
capture the spatial interaction between social media users in information diffusion. Second, the
dynamic SGM explicitly takes the temporal dimension into account by allowing some factors (i.e.,
population size and linguistic similarity) to vary over time, which can help us detect the recency
effect (Leskovec et al. 2009; Macskassy and Michelson 2011) in information diffusion and advance
our understanding of the complex dynamics underlying information diffusion in a more com-
prehensive way. Moreover, the spatial dimension in the dynamic SGM can be scaled to different
granularities to support multi-granularity analysis. Third, ground-truth dataset can be integrated
into the dynamic SGM to help precisely measure the diffusion power using regression analysis (Liu
et al. 2014; Viboud et al. 2006).

With the dynamic SGM, we further develop a visual analytical system called SocialWave to facil-
itate the exploration and analysis of the spatio-temporal diffusion of information on social media.
A timeline visualization, which considers the spatial characteristics of the diffusion network, is
provided to allow users to quickly identify critical time periods when the diffusion is significant.
We propose an innovative visualization that integrates a node-link diagram into a multi-scale
circular cartogram (Dorling 1996) to create a flexible, expressive, and occlusion-free visualization.
This innovation aims to represent the complex dynamics of the spatio-temporal diffusion captured
by SGM for any critical time periods. The simplicity and distinction of the circular cartogram, and
the intuitiveness of the node-link diagrams are delivered with our design. Visual clutter is further
reduced through iterative exertion of repulsive and attractive forces on the nodes and edges. The
key contributions of this work are as follows:

—We propose an extended model that quantitatively characterizes the spatio-temporal dif-
fusion of information on social media under multiple granularities.

—We design and develop SocialWave, a visual analytics system for interactive visual ex-
ploration and summarization of the complex spatio-temporal diffusion of information on
social media.

—We provide empirical findings based on two large-scale social media datasets to test the
effectiveness of our theoretical model and the visual analytics system.

2 RELATEDWORK

This section reviews related work on information diffusion model, visualization of the diffusion
process, and graph visualization.
Modeling of Information Diffusion. Extensive efforts have been made to model information

diffusion on social media: from traditional linear threshold and independent cascade model (Easley
and Kleinberg 2010) to new advanced models involving different diffusion mechanisms such as
user’s influence ability (Ho et al. 2011), adoption probability (Romero et al. 2011), or to predict
the propagation (Cheng et al. 2014). More recently, the development of location-based services
provided by social media sites has motivated research on spatio-temporal analysis of information
diffusion on social media (Caverlee et al. 2013). The following factors are regarded as crucial in
modeling spatio-temporal diffusion of information: geographic distance (Liben-Nowell et al. 2005;
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Scellato et al. 2010), recency effect (Leskovec et al. 2009; Macskassy and Michelson 2011), and
cultural proximity and linguistic similarity (Hoftede et al. 2010; McPherson et al. 2001; Trudgill
1974). These factors, however, are not fully and adequately considered in recent research. Leskovec
et al. (2009) and Macskassy and Michelson (2011) merely focused on the recency effect to model
information diffusion. Kamath and Caverlee (2013) proposed a probabilistic model to measure and
predict the spatio-temporal distribution and popularity of hashtags. This work only integrates
spatial influence (geographic distance) and community influence (linguistic similarity) into the
modeling of diffusion.
These studies could not quantify the diffusion power among different places and are unable

to explore the multi-level spatio-temporal diffusion with different spatial and temporal granular-
ities. In our study, we propose to extend the classic gravity model (see Section 4.1) to character-
ize the spatio-temporal diffusion of information. The classic gravity model is commonly used in
communication, economic, and demography field to explain and predict the extent of flow among
places (Anderson and vanWincoop 2003; Sgrignoli et al. 2015; Trudgill 1974). Our model is scalable
and supports multi-level analysis. Compared with existing models, our SGM can fully consider the
effect of geographic distance, recency effect, and cultural proximity and linguistic similarity.
Visualization of Information Flow. Various visualization methods have been proposed to

present and analyze the spatial and/or temporal information diffusion on social media, while most
of the work focuses on the temporal dimension of information diffusion (Sun et al. 2014; Viégas
et al. 2013;Wu et al. 2014; Times 2011; Guardian 2011; Stefaner 2013; Zhao et al. 2014). In the present
work for visualizing spatio-temporal information diffusion on social media, Cao et al. (2012) em-
ployed a sunflower metaphor to visualize the spatio-temporal propagation of raw tweets and sen-
timent. Ho et al. (2011) visualized the geographical distribution of the tweets and sentiment related
to a specific event on a map. Marcus et al. (2011) directly marked the geographic propagation on
maps to visualize the geographic influence. However, most of these works use geographical maps
as the background and overlay diffusion process directly on the maps, which could introduce seri-
ous visual clutter and occlusion, particularly for large diffusion graphs. This issue can considerably
hinder the exploration of spatio-temporal diffusion. In contrast, our work, SocialWave, leverages
the advantages of the simplicity and distinction of circular cartogram (Dorling 1996) and the in-
tuitiveness of node-link diagrams. Visual clutter and occlusion issues can be properly addressed
through iterative exertion of repulsive and attractive forces on the nodes and edges.
Graph Visualization. Graph visualization has attracted considerable attention in recent years.

We focus our discussion on visual clutter reduction of node-link diagrams that are closely related
to our work. Interested readers can refer to excellent surveys and books for a complete review of
graph visualization techniques (Herman et al. 2000; Kaufmann and Wagner 2001).

Researchers have proposed different strategies such as edge displacement, node clustering, and
graph sampling to reduce visual clutter of graph visualization. Graph sampling methods (Leskovec
and Faloutsos 2006; Rafiei 2005), such as node sampling and edge sampling, have been widely used
to obtain a sampled representative graph for exploration. However, these methods could disregard
important diffusion patterns that are not sampled. Node clustering (Eades et al. 1997; Kaufmann
and Wagner 2001) has also been used to simplify a large, complex graph by clustering similar
nodes. However, solely relying on node clustering is not sufficient, because the remaining nodes
and edges with varying sizes and widths may still occlude each other.
Researchers have introduced many edge displacement methods such as hierarchical edge

bundling (Holten 2006), geometry-based edge bundling (Cui et al. 2008), force-directed edge
bundling (Holten and Van Wijk 2009), divided edge bundling (Selassie et al. 2011), and flow
map (Phan et al. 2005; Verbeek et al. 2011) to group edges and reduce visual clutter. The existing
edge bundling methods have been successfully applied to reduce visual clutter of general graphs.
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Fig. 1. Overview of the system SocialWave, which includes three major parts: data preprocessing, model

analysis, and interactive visualization.

However, they cannot be directly applied to visualize the complex graph (captured by our proposed
spatio-temporal diffusion model), namely, a dynamic, directed, dyadic full graph with nodes and
edges that have different sizes and widths. Because these methods ignore either the edge width
or the node size, which could easily lead to occlusion and clutter issues. Ambiguity free edge
bundling (Luo et al. 2012) has been proposed to avoid edge ambiguity by routing edges through
nearby empty cells. This method works for locally dense graphs but may fail to reduce clutter
when nodes are overlapped or no empty cell exists near ambiguous edges.
Our work employs a novel method that takes into account the node size and edge width to

rearrange the graph layout and improve its readability. The main idea is similar to the circular car-
togram that relaxes the geolocation constraint of nodes while still maintaining users’ geographical
mental map.More specifically, ourmethod allows the nodes to be slightly shifted around their orig-
inal places while preserving the relative spatial relationships with their neighbors. In contrast to
the circular cartogram, our method considers both the weighted nodes and the weighted edges
to exert the repulsive and attractive forces iteratively, such that adequate space could be reserved
to bundle edges and avoid the overlaps while preserving users’ mental map of the geographical
reference of the nodes in the original map.

3 SYSTEM OVERVIEW

SocialWave includes three major parts, namely, data preprocessing, model analysis, and interac-
tive visualization. Figure 1 illustrates the system overview. The data preprocessing part cleans
Twitter data and uses Google Geocoding API1 to geocodes the user location for each tweet by
approximating the latitude and longitude of the corresponding user from the place provided
in his/her profile. This strategy is commonly recognized in performing geography-related
exploration tasks (Sakaki et al. 2010). A high-performance information retrieval engine, Apache
Lucene,2 is adopted subsequently to facilitate text indexing and searching. Time series for hashtag
occurrence in different locations at different times are extracted through the engine. The model
analysis part is fed with various time-varying and time-invariant data such as the temporal
occurrence of hashtags for each place, temporal linguistic similarity, and cultural proximity
among different places. Our SGM can quantitatively measure the dynamic diffusion power among
different places. The visualization part is further fed with the output of the model analysis part.

1https://developers.google.com/maps/documentation/geocoding/.
2https://lucene.apache.org/.
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It visualizes the dynamic information diffusion in both temporal and spatial dimension with
coordinated views to enable interactive investigative analysis.

4 MODEL

This section introduces the classic gravity model and then describes our dynamic SGM to quantify
the spatio-temporal properties of information diffusion on social media.

4.1 Classic Gravity Model

Gravity model has been hailed as one of the most popular paradigms in studying spatial interac-
tion behavior of human populations in various research areas (Anderson and van Wincoop 2003;
Trudgill 1974; Sgrignoli et al. 2015). The classical gravity model posits that the interaction between
two populations is directly related to their population size and inversely related to the extent of
separation between them (Isard and Bramhall 1960). There are two major challenges in applying
the classic gravity model to examine the spatio-temporal properties of information diffusion.
The first challenge is how to operationalize the extent of separation between populations.

The most intuitive operationalization of the extent of separation is the geographic distance be-
tween two populations. Although the cyberspace has been touted to be boundless, human inter-
action behavior, such as befriending and communication, is recognized as geographically deter-
mined (Liben-Nowell et al. 2005; Peng et al. 2015). In addition, other dimensions relevant to specific
research contexts should be considered to achieve a valid and reliable understanding of spatial in-
teraction behavior (Sen and Smith 1995). In this study, the diffusion of information among Twitter
users from different geolocations should matter with the separation in three aspects, namely, ge-
ography, culture, and linguistic pattern. The second challenge is the static nature of classic gravity
model, which assumes that all the parameters included are time-invariant. Most of the empiri-
cal studies on classic gravity model focused on providing a snapshot description of interaction
behavior in specific time periods (Sen and Smith 1995), although interaction behavior between
human populations is an ongoing process. These static descriptions assumed that all the param-
eters included in the model were time-invariant. In the current study, we explicitly integrate the
temporal variations of relevant parameters into the gravity model and propose an extended model,
which can allow us to uncover the dynamics of interaction behavior involving significant struc-
tural changes.

4.2 Dynamic Social Gravity Model

With the aforementioned challenges, we propose an extendedmodel, called dynamic social gravity
model, that quantifies the diffusion of information from users in location i to users in location j

at time t with a combination of following factors, namely, salience of information among users in
locations i and j, geographic distance between locations i and j, recency effect for information adop-
tion between location i and j at two adjacent time t and t-1, and cultural proximity and linguistic

similarity between users in locations i and j. These factors are considered practically necessary
and theoretically significant in characterizing the diffusion pattern of information across different
geolocations over time. In this study, we use hashtag as the elementary propagation unit in mod-
eling spatio-temporal diffusion of information on social media. With the consideration of above
crucial factors, we model the diffusion power from users in location i to users in location j at time
t with respect to a hashtag h as follows:

Rt

i
h−→j

= S
γ

i (t−1), j (t )
Pτ1
i (t−1)P

τ2
j (t )

d
ρ
i, j

, (1)
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where

Si (t−1), j (t ) =
1

ci, j

∑
w min(Pw,i (t−1), Pw, j (t ) )
∑
w max (Pw,i (t−1), Pw, j (t ) )

. (2)

In Equation (1), Pi (t−1) and Pj (t ) are the salience of hashtag h observed among users in location
i and j at time t-1 and t. The exponential parameters τ1, τ2 , ρ, and γ moderate the dependence
of diffusion strength on the salience of hashtag h observed in location i and j, the geographical
distance and semantic similarity between the two locations. The salience of a hashtag in a location
is computed by dividing the number of occurrences of the hashtag in that location by the total
number of occurrences of the hashtag across all the locations. Pi (t−1) and Pj (t ) could be scaled to
multiple hashtags by adding the number of occurrences of the hashtags observed in corresponding
locations respectively. Other terms in our dynamic SGM are elaborated as follows with respect to
the aforementioned factors:
GeographicDistance. Information and communication technologies have been touted to break

the geographic boundaries in human society (Cairncross 2001). However, recent empirical findings
imply that the geographic distance still plays a significant role in friendship formation and infor-
mation diffusion (Liben-Nowell et al. 2005; Peng et al. 2015; Scellato et al. 2010). The greater the
geographic distance between two geolocations, the less interaction users from both locations tend
to have. Thus, a distance decay function (i.e., d

ρ
i, j ) is an indispensable component in our model to

estimate the diffusion power between the users from different locations. di, j in Equation (1) rep-
resents the geographic distance between location i and j. The exponent value ρ are supposed to
be positive. The geographic distance between two geolocations is calculated using the Haversine
formula, a widely used method in calculating great-circle distance on Earth’s sphere at two points
with specific longitude and latitude.
Recency Effect. A temporal order is implied in all diffusion processes where information (i.e.,

hashtags in our study) spreads from users in location i to users in location j. Therefore, it is theo-
retically appealing and methodologically necessary to take the temporal dimension into account
when examining the influence of users from geolocation i on users from geolocation j. Recency
effect refers to a cognitive bias that people are more likely to recall the information they have been
recently exposed to. Recency effect has been found to be prominent in information diffusion mostly
due to the overloaded information environment on social media (Leskovec et al. 2009; Macskassy
and Michelson 2011). Therefore, it is reasonable for us to assume that users in location j at time t
will be influenced by those in location i at time t-1. The “recency” is defined as a 4h time window
in the study, since a 4h time window can provide adequate observations to capture users’ temporal
activities (Juster and Stafford 1991; Sun et al. 2014).

Cultural Proximity and Linguistic Similarity. With everything else being equal, informa-
tion is more likely to spread between two populations when they have similar cultural back-
ground (McPherson et al. 2001; Trudgill 1974). Furthermore, users tend to adopt the informa-
tion that is linguistically similar to what they used or were exposed before (Sun et al. 2014). In
our model, we include a culturally weighted linguistic similarity (i.e., Si (t−1), j (t )), which combines
both cultural proximity and linguistic similarity in assessing the influence between users from
different locations. We adopt a widely used framework called Hofstede’s cultural dimensions the-
ory (Hoftede et al. 2010) to measure the cultural proximity (i.e., ci, j ) between two geolocations. Six
dimensions, namely, power distance, individualism, uncertainty avoidance, masculinity, long-term
orientation, and indulgence are evaluated for each country based on Hofstede’s model. The cul-
tural proximity between two geolocations is calculated by computing the Euclidean distance of
corresponding two feature vectors with respect to the six dimensions. In Hofstede’s model, some
countries are missing in the above six dimensions. We use the average value of the corresponding
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Table 1. Parameters Estimation of #Ebola in a Global-scale Model

Parameter Estimate Standard Error t Value P Value

τ1 0.14840*** 0.01824 8.135 6.55e-16

τ2 0.14075*** 0.01849 7.611 3.90e-14

ρ 0.42729*** 0.03744 −11.413 <2e-16

γ 0.22175** 0.05781 3.836 0.000128

Significance of parameter: *<0.01, **<0.001, ***<0.0001.

dimensions of neighboring countries to impute the missing values in Hofstedes cultural dimen-
sions. For the state/province or an even finer level within a country, we assume that the culture is
homogeneous within a country (i.e., ci, j = 1). We further measure the linguistic similarity between
users in two locations using the weighted Jaccard coefficient (Ioffe 2010). The weighted Jaccard co-

efficient (i.e.,
∑
w min (Pw,i (t−1),Pw, j (t ) )∑
w max (Pw,i (t−1),Pw, j (t ) )

) considers the sets of unique hashtags mentioned in the two

locations Pw,i (t−1) and Pw, j (t ) , which represent the salience of hashtagw observed in geolocation i

and j at time t-1 and t, respectively. Geolocations that possess common hashtags with equal num-
ber of occurrences will have a linguistic similarity score of 1, and those that do not share any
hashtag will have a score of 0.

4.3 Measuring Diffusion Power

The diffusion power between two locations takes the form of Equation (1), however, the parameters
τ1, τ2, ρ, and γ are still unknown. Therefore, we propose a regression model by replacing the
left side of Equation (1) with comparable dataset, which include the communication behaviour
between different locations. In this study, we adopt a flight network dataset3 as a ground-truth
dataset to evaluate the proposed dynamic SGM. Flight network is commonly used to explicitly
illustrate and acts as a regression analysis simulation dataset for the spatial communication among
different locations with the form of gravity model (Liu et al. 2014; Viboud et al. 2006). Different
spatial scale and selection of hashtag(s) may result in different parameters. For example, we can
adopt the country level of flight network dataset to estimate the parameters for global events and
state level to estimate the ones for domestic event. In Table 1, we illustrate the estimated parameters
for the hashtag #Ebloa within a global-scale model as an example. t-test and P-value shows that
all factors in the dynamic SGM are significantly associated with the real-world communication
behaviours.
Moreover, we are interested in examining the overall interaction between users in two geoloca-

tions in the diffusion process regardless of the diffusion direction. Many extended gravity models
for measuring spatial interaction assume that the influence between location i and j could be fur-
ther decomposed into the addition of the influence from i to j and that from j to i (Trudgill 1974).
Thus, following this strategy, we further model the overall diffusion power between location i and
j at time t with respect to a hashtag h as follows:

Rt
i
h↔ j
= Rt

i
h−→j

+ Rt

j
h−→i

, (3)

where Rt

j
h−→i

represents the diffusion power from location j to i at time t with respect to hashtag

h and could be simply derived in the same way as expressed in Equation (1). The diffusion power

3http://www.openflights.org/.
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between two locations can indicate the overall magnitude of the diffusion power between the
locations and is useful in presenting the overall diffusion pattern among different geolocations at
a given time.

5 VISUAL DESIGN

This section introduces the user requirements and research questions collected from domain ex-
perts, followed by a set of design goals derived from the requirements. We then detail our visual-
ization techniques.

5.1 User Requirements

In this study, we have collaborated with a group of domain experts in communication and me-
dia studies comprising one professor, four postgraduate students, and one undergraduate student
to understand the spatio-temporal diffusion of information on social media. After multiple brain-
storming sessions, we have identified a set of user requirements and research questions for ana-
lyzing and exploring the dynamics of spatio-temporal diffusion of information regarding an event
on Twitter.

R1. How will the overall spatial diffusion network evolve over time? When will significant
changes occur in this spatial diffusion process?

R2. How do various geolocations across the world differ from each other on their roles in in-
formation diffusion on social media? Specifically, users in which geolocations will initiate,
improve, or impede the information diffusion on social media?

R3. How will the roles of different geolocations in information diffusion evolve over time?
When will a specific geolocation contribute most or least to the spatial diffusion of infor-
mation? When will a specific geolocation exert the greatest influence on or receive the
greatest influence from other geolocations?

R4. Given an identified spatial or temporal diffusion pattern, could plausible explanations
or preliminary hypotheses be formed on possible events? For instance, when a group
of geolocations are found to display unusual diffusion patterns in most time periods, is
this phenomenon mainly caused by the geographical distance, cultural proximity, or/and
linguistic similarity? Will the unusual patterns hold in various events?

R5. What hashtags are more likely to go viral across the globe (or across a group of selected
geolocations)? When did they go viral? How can hashtags differ from each other in the
properties of their spatial diffusion at a given time?

These user requirements help us shape the principles of visual design, and draw the roadmap
for our visual system.

5.2 Design Goals

We derive the following design principles to design visualization techniques that help address the
research questions.

G1. Provide an overview of spatio-temporal diffusion. The system should provide an
overview of spatio-temporal diffusion to address the questions in R1. In particular, it
should visually summarize the overall evolution of spatial diffusion network over time to
help detect interesting and critical time points for further analysis (e.g., the time when
the diffusion network concentrated in certain geolocations). The overall visualization also
serves as a basis for analysts to drill in to identify detailed temporal or spatial diffusion
patterns for in-depth exploration and analysis (R2–R5).
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G2. Unfold diffusion patterns. When interesting overall diffusion patterns emerge, the
users should be allowed to interactively see and examine the detailed diffusion patterns
as well as context information regarding the patterns to enable in-depth analysis. Social-
Wave uses a map visualization to unfold any pattern discovered in the overview. It can
distinctly convey the pair-wise diffusion among geolocations on a map at a given time
period, which is important to address R2, R3, and R5. Moreover, temporal diffusion pat-
tern between specific geolocations must be unfolded to users to support further analysis
(R2 and R3).

G3. Support comparative analysis. The system should allow users to create a series of
small coordinated multiples that show spatial diffusion among geolocations at different
time periods to facilitate comparative analysis. Tracking and comparing spatial diffusion
patterns at different periods to understand the commonalities and differences over time is
particularly useful for R1, R2, R4, and R5. Different geolocations has different magnitude
of impact, our visual design should provide multi-scale information to enable in-depth
comparison.

G4. Design intuitive visual representations. Our collaborators have little experience in
using advanced visualization systems. They prefer simple and intuitive visualizations
to perform investigative tasks (R1–R5). Therefore, SocialWave combines a circular car-
togram and a node-link diagram, which are easy to understand in a novel way to visually
represent the diffusion among geolocations. Further, the design should be helpful in pre-
serving user’s geographical mental map.

G5. Reduce visual clutter. SocialWave visualization can be severely cluttered with an in-
creasing number of nodes and edges of varying sizes in the diffusion network. The issue
can easily degrade task performance or lead to misleading information (R1–R5). Social-
Wave seeks to effectively reduce visual clutter through a new layout algorithm that it-
eratively and judiciously bundles the edges and adjusts the node positions to remove
overlaps while preserving the relative spatial positions of the nodes.

5.3 Visualization Techniques

This section introduces our visualization techniques. Figure 2 shows our user interface that has
two main views: a temporal visualization (Figure 2(a)) for showing the overall trend of spatial
diffusion among all geolocations over time, and a spatial visualization (Figure 2(b)) for displaying
diffusion of information at a given time period. Figure 2(c) shows a hashtag view for selecting
hashtag(s) of interest to be investigated. A history view for a user to save interesting findings is
also provided on the right of the user interface (Figure 2(d)).

5.3.1 Spatial Visualization. Visual Encoding. In our design, we need to demonstrate the
spatial diffusion among different places at a given time (G2), which could be transformed into a
problem of visualizing a weighted graph with nodes and edges of varying sizes. We design a spa-
tial visualization to address this problem by integrating a widely used node-link diagram into a
well-known circular cartogram. By using the circular cartogram, we can clearly and intuitively
demonstrate an attribute by the size of a circle, and do not need to compare complex shapes that
represent different places (G4 and G5) (Dorling 1996). Other designs such as conventional choro-
pleth or map distortion may lead to biased perception (Dorling 1995). Further, circular cartogram
could preserve the approximate centroid of corresponding geolocations to maintain users’ geo-
graphical mental map. The diffusion network is visualizedwith node-link diagram, which is widely
used in conveying network structure intuitively (Figure 2(b)). The nodes in SocialWave represent
places, and the node positions imply the geographical positions of the places. The size of a node
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Fig. 2. Spatio-temporal diffusion of information on social media during outbreak of 2014 Ebola Epidemics

with SocialWave. (a) The overall temporal trend of spatial diffusion among all geolocations over time; (b) spa-

tial visualization for displaying diffusion of information at a given time period; (c) hashtag view for selecting

hashtag(s) of interest to be investigated; (d) history view for comparing spatial diffusion patterns found at

different time.

encodes the salience of the corresponding geolocation with respect to certain hashtag(s) of inter-
est. The diffusion among geolocations is represented by edges, and the width of edges encodes the
diffusion power.
To provide a more detailed overview of the spatial visualization, we propose a multi-scale node

visualization (G1, G3, and G4). According to the size of the nodes, three categories of nodes are
provided in the SocialWave, namely, word node, pie node, and plain node. In a word node (see
the nodes representing US and UK in Figure 2), salient keywords are embedded in the node to
distinctly and intuitively summarize the conversations in the specific location. A word node is
further surrounded by a donut chart to intuitively encode the proportion of different keywords,
and the arc color corresponds to the color of the keywords in the node. For smaller nodes (i.e., pie
nodes), we replace the nodes with pie charts (see the nodes representing ES, FR, and NG, and so on,
in Figure 2). Each slice represents one keyword, and the color helps distinguish different keywords.
The size of each slice in a pie node is proportional to salience of corresponding keywords. To reduce
visual clutter (G5), we decide to leave the nodes that are much smaller as it is (plain nodes). The
slices of the donut chart and pie chart are ordered anti-clockwise. The color is globally consistent
in one spatial diffusion network,
Spatial Layout Generation. Visualization of a diffusion network can be viewed as a problem

of visualizing a weighted graph in a limited screen, while the nodes occupy initial positions and
the size of nodes and width of edges may vary to different extents. Simply combining both the
node-link diagram and circular cartogram may produce unappealing and ineffective results. For
example, severe overlap and clutter can be introduced, because the nodes and edges are of different
sizes (Figure 3(a)). This situation can hinder users in exploring diffusion patterns. Moreover, the
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Fig. 3. Illustration of the algorithmused to rearrange the nodes. (a) Initial layout without nodes displacement

and edge bundling; (b) rearranged layout without overlap among nodes and edges.

crossing among edges will further aggravate the visual clutter. The former issue could be handled
by scaling the nodes size and edge width. However, the overlap between edges and nodes may still
exist and some nodes and edges can be too small or too thin to be perceived. The latter issue may
be addressed by edge bundling methods, but the bundled edges may still overlap with other nodes
nearby.
Alternatively, the visualization layout problem can be directly transformed into a non-linear op-

timization problem with various types of non-linear constraints, such as avoiding overlaps among
nodes, avoiding overlaps among nodes and edges, and preserving relative positions of nodes. How-
ever, the number of constraints can increase quickly as the number of nodes increases and the
graph becomes cluttered. Thus, the optimization in a cluttered graph with respect to many con-
straints can easily result in large search space with many local minimums. We implemented a few
methods by formulating the problems into different optimization problems, such as least squares
optimization and general non-linear optimization. After several experiments, we found it is dif-
ficult, if not impossible, to find a good solution using the methods in such huge search space.
Most optimization results still suffer from the overlap problem of edges and nodes. Furthermore,
interactive performance can be hardly achieved.
To reduce clutter and create a distinct and occlusion-free graph visualization, we propose a

new layout algorithm to iteratively rearrange the nodes and displace the edges with repulsive
and attractive forces exerted on the nodes and edges in the graph. We classify the exertion of re-
pulsive and attractive forces on the nodes and edges into four categories: repulsive forces among

overlapped nodes, repulsive forces among overlapping nodes and edges, attractive forces among geo-

graphical neighboring nodes, and repulsive and attractive forces among compatible edges.

Repulsive Forces among Overlapped Nodes. In general, nodes that overlap with each other
should be repelled outward to remove occlusion. Directly applying the repulsive force function
proposed in circular cartogram (Dorling 1996) will pose two major challenges. First, some over-
lapping nodes are connected with edges, but the nodes shifted by the force will be in close contact
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with neighboring nodes. Thus, the connection between the nodes cannot be well revealed, because
they are too close. Therefore, extra space needs to be reserved to display the edges legitimately.
The second challenge lies on the size of the nodes. A large node may overlap severely with its
surrounding nodes, and it can be repelled by those nodes. Given the preattentive effect and vi-
sual salience of the node size (Ware 2012), a dramatic displacement of the large nodes can break
users’ geographical mental map. Thus, a larger node should be shifted less. On the basis of these
concerns, we propose a new function for computing the repulsive force exerted by node nj to its
adjacent overlapping node ni with respect to the x and y dimensions as follows:

ΔxRi = wi, j

Oi, j (x j − xi )
Si | |ni − nj | | , ΔyRi = wi, j

Oi, j (yj − yi )
Si | |ni − nj | | , (4)

where wi, j represents the weight of the edge connecting node ni and nj , Oi, j is the overlap size
between node ni and nj , and Si is the area of node ni . This repulsive force exerted on a node is

illustrated in Figure 3(a) as notations ΔxRi and ΔyRi . We computeOi, j by ri + r j − ||ni − nj | |, where
ri and r j represent the radius of node ni and nj , and | |ni − nj | | is the distance between ni and nj .
The repulsive force is enabled only when Oi, j is larger than zero. In Equation (4), wi, j aims to
increase the repulsive force exerted on node ni , and Si is used to weigh down the force.

Repulsive Forces amongOverlappedNodes and Edges. In addition to the overlap issue among
nodes, overlaps may also exist between nodes and edges. Thus, the nodes should be repelled to
avoid occlusion with the edges. We denote the overlap between edge ek and node ni as Ok,i , and
the centroid of the overlap area as nc . We formulate the repulsive force exerted from edge ek on
node ni as follows:

ΔxEi = ωk,i
Ok,i (xc − xi )
Si | |nc − ni | | , ΔyEi = ωk,i

Ok,i (yc − yi )
Si | |nc − ni | | . (5)

This repulsive force exerted on a node is illustrated in Figure 3(a) as notations ΔxEi and ΔyEi .
The repulsive force from an edge to a node is not only proportional to the size of the overlap
between them, but also proportional to the distance between the edge and center of the node. For
instance, if a thin edge lies near the center of a node, the repulsive force will be small because of
the small overlap. This situation will result in a large number of iterations for final visualization
generation. Thus, we introduce parameter ωk,i to handle this issue. We compute ωk,i by ri/| |nc −
ni | |. The parameter helps enhance the repulsive force when a thin edge lies in a large node, which
accelerates the iteration process. A closer edge to the center of a node corresponds to a larger
repulsive force exerted on the node from the edge.

Attractive Forces between Neighboring Nodes. To preserve users’ geographical mental map,
the displaced nodes should be close to their original geographical neighboring nodes. Thus, we
expect that the originally neighboring nodes should be attracted to each other. We formulate the
attractive force exerted from node nj on neighboring node ni as follows:

ΔxAi =
Mi, j (x j − xi )

wi, jSi | |ni − nj | | , ΔyAi =
Mi, j (yj − yi )

wi, jSi | |ni − nj | | , (6)

whereMi, j is the distance between node i and node j, which is defined asMi, j = | |ni − nj | | − ri − r j .
The attractive force is valid only when Mi, j is larger than 0. We use wi, j in the denominator to
prevent the connected nodes from getting too close to each other, because extra space should
be maintained for displaying the edges. The attractive force exerted on a node is illustrated in
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Figure 3(a) as notations ΔxAi and ΔyAi . The geographical neighbors of a geolocation are extracted
from the GeoNames database.4

Finally, the total repulsive and attractive forces exerted on node i can be derived as follows:

Δxi = β (ΔxRi + Δx
E
i ) + (1 − β )ΔxAi , (7a)

Δyi = β (ΔyRi + Δy
E
i ) + (1 − β )ΔyAi , (7b)

where β is the ratio controlling the proportion between the repulsive and attractive forces. The
bigger the β , the larger the repulsive force is, and the faster the iteration ends. However, with a
larger repulsive force, the nodes may be pushed outward too far, thus leading to an unappealing
result. We set β = 0.9 after experiments to create reliable and appealing layouts.

Repulsive and Attractive Forces between Edges. To further reduce visual clutter, the edges
representing the diffusion between different geolocations are bundled to improve graph readabil-
ity. One straightforward solution is to bundle the edges in an occlusion-free graph layout created
by a layout algorithm by using only the three aforementioned forces. However, this method can
easily introduce new overlaps between the nodes and bundled edges. Therefore, the edges should
be bundled simultaneously with the process of the nodes displacement. We adopt a force-directed
edge bundling method (Holten 2006) to aggregate compatible edges in each iteration. Compatible
edges are the edges that have similar angles, similar lengths, similar positions, and so on (Holten
2006). As illustrated in Figure 3(a), a subdivision point on edge e is attracted by the subdivision
points on the edges compatible to e in the context of electrostatic force (Fe ). The point is also
attracted by nearby subdivision points on e in the context of spring force (Fs ).
A visualization example generated by the layout algorithm is demonstrated in Figure 2(b). Each

node represents a country, and the diffusion among countries is represented by edges. We can
see that the displaced nodes have no overlap with other nodes and bundled edges, while relative
position among the nodes are preserved as much as possible.

5.3.2 Temporal Visualization. Visual Encoding. To reveal the overall temporal trend of
spatial diffusion (G1), we adopt a line chart (Figure 2(a)) to present the time-varying graph cen-
trality of the weighted diffusion graph. The line chart can reveal the dynamic variation of the
degree of centralization of the diffusion network (Freeman 1979) and identify when the diffusion
spreads from one or most influential geolocations. A larger graph centrality leads to the stronger
centralization of the diffusion network. The texts near various peaks on the line chart indicate
abbreviation names of the most influential geolocations.
We also provide a 1D heatmap to present the temporal variation of spatial property of a hash-

tag(s) (Figure 2(a)). We use spatial entropy that is defined in Kamath et al. (2013) as the property
to illustrate how the distribution of a hashtag(s) evolves over time. The color of each bar in the 1D
heatmap represents the spatial entropy of a hashtag(s) at each time. Darker color indicates higher
spatial entropy, which implies that the hashtag(s) are evenly distributed across the world, and vice
versa.
Temporal Layout Generation. We calculate the graph centrality of the spatial diffusion net-

work at a given time with the method proposed in Freeman (1979). The centrality of a node (e.g.,
the degree centrality, betweenness centrality) must be first calculated. Given that the edges in the
diffusion network have different weights, we use weighted degree centrality, which accounts for
both number of edges associated with a node and the weights of the edges, as the centrality mea-
surement of a nodeni . Theweighted degree centrality of nodeni is defined as c (ni ) =

∑
j ∈N (ni )wi, j .

4http://www.geonames.org/.
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N (ni ) is the set of neighboring nodes connected with node ni , and wi, j is the weight of the edge
associating node ni and nj . With the weighted degree centrality of each node, we calculate the
graph centrality of diffusion network at time t as follows:

Ct =

∑n
i=1 (c∗ (ni ) − c (ni ))

max
∑n

i=1 (c∗ (ni ) − c (ni ))
, (8)

wheremax
∑n

i=1 (c∗ (ni ) − c (ni )) represents the maximum possible sum of differences of node cen-
trality for any graph of n points, and c∗ (ni ) is the largest weighted degree centrality in the graph.
With degree centrality as the measurement of node centrality, the maximum sum of differences in
the denominator can be determined by (n − 2) (n − 1) with respect to a star graph (Freeman 1979).

5.3.3 User Interactions. SocialWave supports various basic and advanced interactions to ad-
dress different analytical tasks (G2 and G3).
Overview First and Details-on-Demand. SocialWave provides a summary of the spatio-

temporal diffusion patterns to assist users in finding interesting and critical time points. Multi-
ple perspectives of detail are available in SocialWave to help reveal the detailed information of
the diffusion. Users can examine the detailed spatial diffusion pattern by directly clicking on the
line chart at corresponding time. In the spatial visualization, users can further investigate the de-
tailed temporal diffusion pattern between locations of interest by clicking the edge representing
the diffusion.
Comparative Analysis Support. Users could hover over a keyword, a pie slice, or a donut

slice to highlight the proportion of the keyword in different locations (see the pop-up slices rep-
resenting “eric” in Figure 2). When users find an interesting spatial diffusion pattern, or a pattern
together with word cloud, they could save the pattern to a history view to form small multiples for
further comparison. Users are allowed to navigate in the history view and restore corresponding
patterns. They are also allowed to investigate the pair-wise diffusion power between two geolo-
cations by hovering over one edge. A green circle will emerge on the edge, and the position of
the circle implies the proportionality of the diffusion power. The more distant from the circle to a
geolocation, the large diffusion power exerted from the geolocation to the other.
Detailed conversations examination. Users can click on a node, and a detailed word cloud

will pop up to present a visual summary of the tweets that are posted in the location represented by
the node at that time period. The word cloud facilitates the identification of significant keywords.
Users can further click on a keyword of interest to examine the detailed tweets containing the
keyword, as well as the users in the same place and at the same time.

6 EVALUATION

This section presents two case studies and a user evaluation to demonstrate the usability and
effectiveness of SocialWave.

6.1 Case Studies

We collected two large-scale Twitter datasets about two events that massively trended on so-
cial media in 2014, namely, Ebola Epidemics and Ferguson Unrest, to test the effectiveness and
usefulness of SocialWave. The Ebola Epidemics dataset contains 17,125,091 tweets and 3,280,193
users ranging from July 20, 2014 to December 25, 2014; and the Ferguson Unrest dataset contains
22,476,117 tweets and 2,586,423 users ranging from August 5, 2014 to December 12, 2014.

Spatio-temporal Diffusion in Ebola Epidemics. This case study is used to demonstrate how
SocialWave helps users explore the spatio-temporal diffusion during the outbreak of Ebola Epi-
demics. We select #Ebola as the main propagation unit to explore the diffusion.
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SocialWave allows for the quick identification of the overall temporal trend of spatial diffusion
of information. Figure 2(a) illustrates a 1D heatmap and a line chart for showing the temporal
variation of spatial entropy and centralization of the diffusion network with respect to #Ebola,
respectively. The 1D heatmap presents the evolution of spatial distribution of #Ebola over time.
The bars in time period T1 have darker color than those in time period T2 (highlighted within
the orange dashed rectangles), indicating that #Ebola has a higher spatial entropy during T1. This
finding implies that #Ebola was evenly distributed among different geolocations all over the world
in T1, and was concentrated in certain geolocations in T2. The line chart below reveals when sig-
nificant changes emerge in the spatial diffusion process as well as relevant influential geolocations.
The texts near peaks indicate the most influential geolocations, and examining the texts reveals
that the United States (US) and the United Kingdom (UK) occurred most frequently (see the Arrow
A1 in Figure 2(a)). This pattern is more apparent in the period from October 5, 2014 to October
26, 2014, which approximately coincides with time period T2. This finding suggests that occur-
rence of #Ebola concentrated in US and UK, and that they initiated to diffuse information to other
geolocations during the period.
SocialWave enables users to unfold detailed spatial diffusion patterns among different geoloca-

tions. We first focus on the time period with the highest graph centrality by directly clicking the
peak that occurred on October 8, 2014 on the line chart. A spatial visualization (Figure 2(b)) is pre-
sented to demonstrate the spatial diffusion pattern during that period. Given the varying sizes of
the nodes, we could immediately determine that US and UK are the geolocations most responsible
for emergence of #Ebola on Twitter. These countries emitted plenty of edges with varying widths,
revealing that US and UK played major roles in disseminating information with different diffusion
power with respect to #Ebola at that time period. For instance, the edge connecting Canada (CA)
and US is the widest among all of the edges. These patterns may likely be due to the occurrence
of important events happened in these countries. Thus, we investigate the detailed information
generated in these three countries (US, CA, and UK) by examining the word clouds, donut charts,
and pie charts nested in the corresponding nodes (Figure 2(b)). We can clearly observe for both
US and CA, the largest keyword in the word clouds is “eric,” followed by other keywords such as
“died” and “patient.” Tweets containing the keyword “eric” are examined by directly clicking the
keyword in the two word clouds, and we find that majority of the tweets in these two countries are
reporting the death of the first person diagnosed with Ebola in the US (e.g., “@Wall Street Journal:

Thomas Eric Duncan, the first person to be diagnosed with Ebola in the U.S., has died, according to

hospital”). We speculate that the remarkable diffusion power between these two countries results
from the linguistic similarity of the tweets and the close geographic distance between them.
In addition, we observe a number of edges connecting US and the European countries (e.g., UK,

Spain (ES) and France(FR)) in Figure 2(b), even though these countries are of great distances from
US. For further investigation, we select UK as our focus country because of the notable emergence
of #Ebola in this country, as indicated by the size of the node and relatively stronger diffusion
power between US and UK compared with that in other countries linked to US. Similarly, we find
the keyword “eric” is also salient in UK. This finding can be considered proof of the diffusion phe-
nomenon between US and UK that results from the comparable linguistic similarity despite the
great distance between them. We also find other salient keywords such as “dog” and “nurse” in the
word clouds. Review of the related tweets containing “dog” and “nurse” reveals that users in UK
were tweeting and protesting about a Spanish court order about putting down a pet dog without
quarantine (e.g., “@The Telegraph: Thousands sign petition to save #Ebola dog as protesters clash with

police”). The owner of the dog, a nurse, contracted Ebola while treating Ebola patients. After exam-
ining the word clouds and raw tweets of nearby countries such as ES and FR, we observe similar
patterns for this event (see the pop-up word cloud in Figure 2(b)). This event can be considered
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Fig. 4. (a) Visual summary of the spatial diffusion patterns in Ebola Epidemics dataset among different

geolocations on August 23, 2014. (b) Spatial diffusion patterns found on August 23, 2014, and Nigeria (NG)

served as the center for information diffusion on social media.

the reason for the information diffusion indicated by the edges among these countries (i.e., UK,
ES, and FR) at that time. Moreover, in view of the differences in language of these countries, we
speculate that the close distance among these countries served as an essential role in shaping the
information diffusion among them at that time.
SocialWave can unfold the pair-wise and temporal diffusion patterns among geolocations of

interest. Figure 4(a) shows the spatial diffusion pattern of another interesting time point (August
23, 2014), during which the graph centrality of the diffusion network reached another peak and
the diffusion was centralized in UK and Nigeria (NG) (see Arrow A2 in Figure 2(a)). We can see
that most of the edges spread out from UK and Nigeria. Thus, we examine why Nigeria is one of
the centers for information diffusion and to what extent it influenced other countries during that
time. We hover over the edges linking Nigeria, for instance, the edge between Nigeria and UK.
The nodes representing Nigeria and UK are highlighted. A green circle emerges on the edge (see
Arrow A1 in Figure 4(a)), and the distance from the position of the circle to Nigeria is larger than
that to UK, implying that the users from Nigeria exerted more influence than the users from UK.
We then examine the tweets posted in Nigeria and find the keyword “Liberia” is the most salient

keyword in the word cloud. After examining the tweets containing “Liberia,” we find that the users
in Nigeria were heavily tweeting about the imminent threat of Ebola in West Africa. We speculate
that such massive amount of discussion about the Ebola threat resulted in the high diffusion power
from Nigeria not only to nearby countries but also to distant countries such as UK. Our collaborat-
ing expert is also interested in investigating when Nigeria had the most intense interaction with
UK. Thus, we click on the edge linking Nigeria and UK, and a line chart appears (Figure 4(a)), which
demonstrates the temporal variation of the diffusion power between the two countries. We could
see the diffusion power between Nigeria and UK reached its peak at the beginning (see Arrow
A2 in Figure 4(a)). Clicking the peak shows the spatial diffusion at that time. We could obviously
observe that Nigeria acted as a center of information diffusion across the world (Figure 4(b)). We
then examine the word clouds of the tweets posted in Nigeria at that time, and find that Nigeria
is as prominent as the keywords “alert” and “dies.” Further review of the tweets containing the
keywords shows that this pattern is related to the first death that occurred in Nigeria, which led
to the panic for the Ebola infection.
SocialWave allows users to compare the detailed spatial diffusion in different time periods. Be-

fore switching to other time periods, users can save current spatial diffusion patterns as well as
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Fig. 5. Spatio-temporal diffusion patterns found in Ferguson Unrest dataset in August, 2014. Spatial diffusion

patterns in three adjacent time windows (c, d, and e) are examined for investigation of the temporal patterns

of information diffusion in a short period.

the word clouds in the history view to form small multiples for further comparative analysis. Fig-
ure 2(d) shows three small multiples of three time periods, namely, October 8, 2014 (D1), August
23, 2014 (D2), and July 26, 2014 (D3), which are the same time periods investigated above. As time
went on, the size of the node representing US increases rapidly, indicating that the salience of
#Ebola in US has become much more significant, and US has started to act as the center of the
information diffusion on social media with respect to #Ebola. Moreover, the small multiples show
that the number of countries involved have increased and that the size of most nodes have been
getting larger, indicating that #Ebola has formed a global phenomenon. This pattern demonstrates
that small multiples is useful in providing a different perspective for investigating spatial diffusion
patterns.

Spatio-temporal Diffusion in Ferguson Unrest. The scalability of SocialWave is demon-
strated by the analysis of the spatio-temporal diffusion of information regarding Ferguson Unrest.
Five hashtags that massively trended at that time, shown in Figure 5(a), are selected to investigate
the spatio-temopral diffusion.
With the use of SocialWave, users can discover how information is diffused in a short time

when an unforeseen event occurs. The line chart for the temporal variation of diffusion network
centrality (Figure 5(b)) instantly reveals a significant peak at the beginning. By clicking the peak,
we are navigated to the visualization of the spatial diffusion of a possible breaking event, which
occurred onAugust 10, 2014 (Figure 5(c)). The emitted edges from the nodes indicates thatMissouri
(MO), New York (NY), and California (CA) are responsible for the significant peak and act as the
centers for information diffusion. An examination of the word clouds for the states reveals that the
keyword “police” was very salient. A further investigation of the tweets containing “police” shows
that this pattern was related to the protest against the police that was caused by the gun shooting
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down of a 17-year-old boy by the police in Ferguson, MO. However, our collaborating expert was
more interested in how such unforeseen event diffused on social media at the very moment that
it was happening.
In SocialWave, users can simply press the “Left” key to explore the spatial diffusion in previous

time windows. Figures 5(d) and 5(e) show the spatial diffusion patterns of two previous time win-
dows before the current one, that is, 4 and 8h beforehand. When examining the spatial diffusion
in the first time window (Figure 5(d)), many keywords (e.g., “police” and “unarmed”) related to
the event can be observed in the word clouds of the previous states, and that the keywords are
more salient in Missouri than in other states. Performing the same evaluations in the second time
window (Figure 5(e)), we find that only a few keywords (e.g., “killed” and “police”) are related to
the event in the word clouds of Missouri, and we fail to find relevant keywords in the word clouds
of New York. This temporal pattern implies that the users in New York were presumably influ-
enced by the users in Missouri with a certain time lag. We could further hypothesize that recency
effect influenced how this unforeseen event was diffused from Missouri to other geolocations at
that time. The spatial diffusion in each time period can be snapshotted in the history view to facil-
itate convenient side-by-side comparisons. This case study shows that SocialWave enables users
to detect and analyze the differences in spatial diffusion within adjacent time periods.

6.2 User Feedback

To evaluate the effectiveness of SocialWave, we interviewed one professor who engaged in com-
munication research for more than 10 years, as well as four postgraduate students and one under-
graduate student who are majoring in communication/news media. We first described the visual
encoding and user interactions in SocialWave then demonstrated the patterns that were observed
in the case studies. Their feedback is summarized as follows.
Model Design. The proposed model received positive feedback during the interview from the

experts. They all confirmed that the model can well capture the dynamics of the information diffu-
sion, and estimating the parameters using real world flight network dataset is practical, since the
ground-truth data with respect to information diffusion is not easy to quantify and collect. Regard-
ing the improvement of the proposed model, one expert added that “current model is based on the
node-level (i.e., the variables on both side of the Equation (1) represent the salience of information
of a region), the model could be improved by adding an auxiliary model that takes the dyadic-level
of the diffusion network into count.” For example, the dependent variable of the equation could be
the connection strength of two nodes. Regarding the regression feature of our model, the expert
suggested that splitting current model into a multi-level model could derive more information for
further analysis and following visualization. For example, the salience of a hashtag in location i at
time t could be related to a function of various factors including salience of the hashtag in location
i at time t-1, salience of the hashtag in location j at time t-1, and semantic distance between loca-
tion i and j at time t-1. The coefficient before each factor could be related to a function of various
time-invariant factors including geographical distance, culture similarity, and flight flow among
location i and j.

Visual Design. All the users agreed that exploring spatial diffusion patterns among different
geolocations is not hindered by the displacement of the nodes that represent the geolocations.
They also agreed that despite being simple, the spatial visualization can intuitively convey spatial
diffusion. The professor particularly liked the idea of placing spatial diffusion patterns from dif-
ferent time periods in the history view. He added that “such component is convenient and valuable

for me to relate and compare current spatial diffusion pattern with previous observed patterns.” The
green circle placed on the edge was also appreciated by the professor, who commented that: “The
design is so cute and it is brilliant to re-use an existing visual element to present the dyadic diffusion
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pattern.” However, two of the participants had difficulty in relating the degree of diffusion network
centrality presented on the line chart to the detailed spatial diffusion pattern, because they were
unfamiliar with the concept of graph centrality. Regarding the improvement of the visual design,
one expert suggested that placing the names of the most influential geolocations near each peak
on the graph centrality line chart should be useful for quickly identifying the overall trend of the
roles played by the geolocations.
Usability. All the users confirmed the usefulness and effectiveness of the system, and they all

expressed their eagerness for the system to be put online. The professormentioned that the process
for exploring patterns in such way of “from overview to detail” is reasonable, and that the user
interactions were smooth and easy to master. All of the students appreciated the word clouds and
the coordinated list view of tweets for investigating hidden insights behind the observed patterns.
Regarding the improvement of usability, three students suggested that the system should support
exporting the analysis data, such as numerical diffusion power and the keyword frequency in the
word clouds, to excel files.

7 DISCUSSION

The visual analytic system, SocialWave, can provide communication researchers with an interac-
tive, informative, and insightful platform to explore the spatio-temporal characteristics of informa-
tion diffusion, which can lay a solid foundation for more sophisticated explanatory and predictive
analysis.
Second, the visual analytic system is of great practical values in different applications. The So-

cialWave can serve as a competent tool for commercial organizations to track the diffusion of
innovative products/ideas across the world, which can help business leaders make well-informed
decisions. In public relations (PR) and advertising, the SocialWave can provide valuable and accu-
rate geographical and temporal information for PR/advertising practitioners in designing, imple-
menting, and assessing viral marketing campaigns on social media.
The proposed visual design strictly follows a participatory design process (from the start of

this project to final evaluation) under a close cooperation with domain experts, who prefer simple
and easy-to-use visualizations. Although the visualization is intuitive, the underlying techniques
are non-trivial and grounded on a fundamental theory (i.e., the graph centrality in the temporal
visualization) and solid optimization (i.e., the layout generation in the spatial visualization). Our
graph layout technique could serve as a prompt for an open thread and induce others to come
forward with their solutions with respect to following challenges in our complex graph layout
case: a dynamic directed weighted graph with initial positions of nodes, and the nodes and edges
are of different sizes. The temporal visualization visually summarizes structural changes in diffu-
sion network centrality over time, such that a user can quickly identify interesting time periods.
This top-down visualization strategy works effectively for exploring the spatio-temporal patterns.
However, as suggested by domain experts, there are still scenarios where they want to find and see
a certain diffusion pattern, which can be specified by various conditions. We plan to investigate
this issue and design an intuitive user interface to support this task.
Limitation. Our work still has some limitations to overcome. Regarding the social gravity

model, it is challenging to perform cross-validation, since the ground truth datasets regarding
the spatial interaction among locations with different spatial and temporal granularities are not
easy to quantify and collect. Second, the ground truth of spatial diffusion strength among locations
regarding different events in different time periods may vary significantly. In the future work, we
plan to further evaluate our model against more real world dataset such as international trading
data and immigration data, and the importance of different model factors and their interactions,
which are critical for us to learn more about the behavior of the model. For example, what will

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 2, Article 15. Publication date: October 2017.



SocialWave: Visual Analysis of Spatio-temporal Diffusion of Information on Social Media 15:21

the model perform without the cultural proximity? Does this parameter affect the model much?
Regarding the node-link diagram to demonstrate the data distribution, it is not as intuitive as tra-
ditional geographical views, since the positions of the nodes on the diagram cannot reveal the
geographical positions accurately. Currently, we provide users an option to switch between node-
link view and geographical view. We plan to further explore potential visualizations that could
achieve an appropriate trade-off between these two issues.

8 CONCLUSION

In this study, we present SocialWave, a visual analytics system that couples an advanced diffusion
model and interactive visualization to explore and analyze spatio-temporal diffusion of informa-
tion on social media. The diffusion model is extended from a classic gravity model by consid-
ering four factors, namely, geographic distance, recency effect, cultural proximity, and linguistic
similarity, which have been regarded as theoretically significant factors in communication and
media studies. Our proposed visualizations comprise two main visualizations: the temporal and
spatial visualizations, to visualize the spatio-temporal patterns measured by the diffusion model.
The temporal visualization displays the trend of changes in diffusion network centralization over
time, from which a user can quickly locate important time periods. To visualize the spatial diffu-
sion within a given time period, the spatial visualization uses a novel layout algorithm to create
an occlusion-free, expressive visualization with an integration of a multi-scale catogram and a
weighted diffusion network. In the future, we plan to explore how to extend the model and data
processing steps to incorporate unsupervised learning techniques to increase likelihood of finding
unknown patterns, and enhance the visualizations to handle streaming data.
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